线性时不变系统以及响应的分类

系统:系统就是指得到一个激励信号 e ( t ) e(t) e(t)后,输出一个响应信号 r ( t ) r(t) r(t)。(e:encourage;r:response)
这和我们平常的函数概念比较相似,给定一个变量 x x x,通过一个映射 f f f,输出了一个 y y y
在这里插入图片描述

线性:满足数乘和加法性质就是线性。下面给出明确定义。
一个系统,当其输入为 e i ( t ) e_i(t) ei(t)时,其输出为 r i ( t ) r_i(t) ri(t)。若其满足以下两个条件:

  1. 数乘:输入为 k e ( t ) ke(t) ke(t)时,输出为 k r ( t ) kr(t) kr(t)
  2. 加法:输入为 e 1 ( t ) + e 2 ( t ) e_1(t)+e_2(t) e1(t)+e2(t)时,输出为 r 1 ( t ) + r 2 ( t ) r_1(t)+r_2(t) r1(t)+r2(t)

那么称这个系统为线性系统。

时不变:
一个系统,当其输入为 e ( t ) e_(t) e(t)时,其输出为 r ( t ) r_(t) r(t)。若其满足以下条件:

  1. 当输入为为 e ( t − t 0 ) e(t-t_0) e(tt0)时,其输出为 r ( t − t 0 ) r_(t-t_0) r(tt0)

那么称这个系统为时不变系统。


有人似乎觉得这个时不变天经地义,实则不然。举个例子:
假设一个系统是这样的: r ( t ) = t e ( t ) r(t)=te(t) r(t)=te(t)
那么当 e 0 ( t ) e_0(t) e0(t)输入这个系统的时候,响应为 r 0 ( t ) = t e 0 ( t ) r_0(t)=te_0(t) r0(t)=te0(t)
我们对 e 0 ( t ) e_0(t) e0(t)这个信号做一个时延,变为 e 1 ( t ) = e 0 ( t − t 0 ) e_1(t)=e_0(t-t_0) e1(t)=e0(tt0),那么当 e 1 ( t ) e_1(t) e1(t)输入这个系统的时候,响应为 r 1 ( t ) = t e 1 ( t ) = t e 0 ( t − t 0 ) r_1(t)=te_1(t)=te_0(t-t_0) r1(t)=te1(t)=te0(tt0)

而按照时不变的定义,输入为 e 1 ( t ) = e 0 ( t − t 0 ) e_1(t)=e_0(t-t_0) e1(t)=e0(tt0)时,输出应该为 r 1 ( t ) = r 0 ( t − t 0 ) = ( t − t 0 ) e 0 ( t − t 0 ) r_1(t)=r_0(t-t_0)=(t-t_0)e_0(t-t0) r1(t)=r0(tt0)=(tt0)e0(tt0),这与上面矛盾。所以这个系统就不是时不变系统。


综上,满足以上两个条件的系统称为线性时不变系统(LTI),linear time-invariant

特殊性质:
如果一个系统为LTI,且输入为 e ( t ) e(t) e(t)时,响应为 r ( t ) r(t) r(t)。那么有:

  1. 微分:输入为 e ′ ( t ) e^{'}(t) e(t)时,其响应为 r ′ ( t ) r^{'}(t) r(t)
  2. 积分:输入为 ∫ e ( t ) d t \int e(t)dt e(t)dt时,其响应为 ∫ r ( t ) d t \int r(t)dt r(t)dt

下面只证明第一个,第二个类似可证:
Δ t   ! = 0 \Delta t\ !=0 Δt !=0,那么有:当输入为 e ( t + Δ t ) − e ( t ) Δ t \frac{e(t+\Delta t)-e(t)}{\Delta t} Δte(t+Δt)e(t)时,由于系统是LTI,那么有响应为 r ( t + Δ t ) − r ( t ) Δ t \frac{r(t+\Delta t)-r(t)}{\Delta t} Δtr(t+Δt)r(t),那么随着 Δ t \Delta t Δt越来越小,不就成了导数吗?


响应的分类:
有的线性系统本身固有一个输入 x ( 0 ) x(0) x(0),然后你又施加了一个输入激励 e ( t ) e(t) e(t),那么根据线性系统的加法性质,响应可以拆解为 r ( t ) = r x ( t ) + r e ( t ) r(t)=r_x(t)+r_e(t) r(t)=rx(t)+re(t)
零输入响应: r x ( t ) r_x(t) rx(t)
零状态响应: r e ( t ) r_e(t) re(t)
完全响应: r x ( t ) + r e ( t ) r_x(t)+r_e(t) rx(t)+re(t)


思考练习:
注:下面的 f ( x ) f(x) f(x)就是我上面的 e ( t ) e(t) e(t), y ( t ) y(t) y(t)就是上面的 r ( t ) r(t) r(t) T T T代表一个系统, T T T后面的中括号表示这个系统的外部输入 f ( x ) f(x) f(x)和本身固有的输入 x ( 0 ) x(0) x(0)
在这里插入图片描述
注:线性是分开讨论的。所以一定要先分解,一部分只跟固有输入有关,一部分只跟外部输入有关,如果有交叉项比如 x ( 0 ) f ( t ) x(0)f(t) x(0)f(t),那么不是线性系统。

然后分别讨论这个系统对于外部输入和固有输入是不是线性的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值