系统:系统就是指得到一个激励信号
e
(
t
)
e(t)
e(t)后,输出一个响应信号
r
(
t
)
r(t)
r(t)。(e:encourage;r:response)
这和我们平常的函数概念比较相似,给定一个变量
x
x
x,通过一个映射
f
f
f,输出了一个
y
y
y。
线性:满足数乘和加法性质就是线性。下面给出明确定义。
一个系统,当其输入为
e
i
(
t
)
e_i(t)
ei(t)时,其输出为
r
i
(
t
)
r_i(t)
ri(t)。若其满足以下两个条件:
- 数乘:输入为 k e ( t ) ke(t) ke(t)时,输出为 k r ( t ) kr(t) kr(t)。
- 加法:输入为 e 1 ( t ) + e 2 ( t ) e_1(t)+e_2(t) e1(t)+e2(t)时,输出为 r 1 ( t ) + r 2 ( t ) r_1(t)+r_2(t) r1(t)+r2(t)
那么称这个系统为线性系统。
时不变:
一个系统,当其输入为
e
(
t
)
e_(t)
e(t)时,其输出为
r
(
t
)
r_(t)
r(t)。若其满足以下条件:
- 当输入为为 e ( t − t 0 ) e(t-t_0) e(t−t0)时,其输出为 r ( t − t 0 ) r_(t-t_0) r(t−t0)。
那么称这个系统为时不变系统。
有人似乎觉得这个时不变天经地义,实则不然。举个例子:
假设一个系统是这样的:
r
(
t
)
=
t
e
(
t
)
r(t)=te(t)
r(t)=te(t)。
那么当
e
0
(
t
)
e_0(t)
e0(t)输入这个系统的时候,响应为
r
0
(
t
)
=
t
e
0
(
t
)
r_0(t)=te_0(t)
r0(t)=te0(t)。
我们对
e
0
(
t
)
e_0(t)
e0(t)这个信号做一个时延,变为
e
1
(
t
)
=
e
0
(
t
−
t
0
)
e_1(t)=e_0(t-t_0)
e1(t)=e0(t−t0),那么当
e
1
(
t
)
e_1(t)
e1(t)输入这个系统的时候,响应为
r
1
(
t
)
=
t
e
1
(
t
)
=
t
e
0
(
t
−
t
0
)
r_1(t)=te_1(t)=te_0(t-t_0)
r1(t)=te1(t)=te0(t−t0)。
而按照时不变的定义,输入为 e 1 ( t ) = e 0 ( t − t 0 ) e_1(t)=e_0(t-t_0) e1(t)=e0(t−t0)时,输出应该为 r 1 ( t ) = r 0 ( t − t 0 ) = ( t − t 0 ) e 0 ( t − t 0 ) r_1(t)=r_0(t-t_0)=(t-t_0)e_0(t-t0) r1(t)=r0(t−t0)=(t−t0)e0(t−t0),这与上面矛盾。所以这个系统就不是时不变系统。
综上,满足以上两个条件的系统称为线性时不变系统(LTI),linear time-invariant
。
特殊性质:
如果一个系统为LTI,且输入为
e
(
t
)
e(t)
e(t)时,响应为
r
(
t
)
r(t)
r(t)。那么有:
- 微分:输入为 e ′ ( t ) e^{'}(t) e′(t)时,其响应为 r ′ ( t ) r^{'}(t) r′(t)。
- 积分:输入为 ∫ e ( t ) d t \int e(t)dt ∫e(t)dt时,其响应为 ∫ r ( t ) d t \int r(t)dt ∫r(t)dt。
下面只证明第一个,第二个类似可证:
设
Δ
t
!
=
0
\Delta t\ !=0
Δt !=0,那么有:当输入为
e
(
t
+
Δ
t
)
−
e
(
t
)
Δ
t
\frac{e(t+\Delta t)-e(t)}{\Delta t}
Δte(t+Δt)−e(t)时,由于系统是LTI,那么有响应为
r
(
t
+
Δ
t
)
−
r
(
t
)
Δ
t
\frac{r(t+\Delta t)-r(t)}{\Delta t}
Δtr(t+Δt)−r(t),那么随着
Δ
t
\Delta t
Δt越来越小,不就成了导数吗?
响应的分类:
有的线性系统本身固有一个输入
x
(
0
)
x(0)
x(0),然后你又施加了一个输入激励
e
(
t
)
e(t)
e(t),那么根据线性系统的加法性质,响应可以拆解为
r
(
t
)
=
r
x
(
t
)
+
r
e
(
t
)
r(t)=r_x(t)+r_e(t)
r(t)=rx(t)+re(t)。
零输入响应:
r
x
(
t
)
r_x(t)
rx(t)
零状态响应:
r
e
(
t
)
r_e(t)
re(t)
完全响应:
r
x
(
t
)
+
r
e
(
t
)
r_x(t)+r_e(t)
rx(t)+re(t)
思考练习:
注:下面的
f
(
x
)
f(x)
f(x)就是我上面的
e
(
t
)
e(t)
e(t),
y
(
t
)
y(t)
y(t)就是上面的
r
(
t
)
r(t)
r(t),
T
T
T代表一个系统,
T
T
T后面的中括号表示这个系统的外部输入
f
(
x
)
f(x)
f(x)和本身固有的输入
x
(
0
)
x(0)
x(0)。
注:线性是分开讨论的。所以一定要先分解,一部分只跟固有输入有关,一部分只跟外部输入有关,如果有交叉项比如
x
(
0
)
f
(
t
)
x(0)f(t)
x(0)f(t),那么不是线性系统。
然后分别讨论这个系统对于外部输入和固有输入是不是线性的。