使用Fair kripke来判断kripke的可达性和可避免性

博客探讨了在公平计算上下文中,如何通过构造fairkripke结构来判断集合AA的可达性和可避免性。通过具体的计算路径示例,展示了存在公平计算使得AA既是可达的也是可避免的,揭示了这些概念在模型中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可达性

在这里插入图片描述
画个图看看上面是什么意思。
在这里插入图片描述
假设我们要判断AA={C}的可达性,从而构造如下fair kripke。
在这里插入图片描述
这个时候,存在公平计算, A C ( t ) w AC(t)^w AC(t)w,从而fair kripke是非空的,从而AA是可达的。

可避免性

在这里插入图片描述
还是按照上图,判断AA是否可避免,构造下列新的fair kripke。

在这里插入图片描述
发现其存在公平计算 ( A B ) w (AB)^w (AB)w,从而其非空,从而原是可以避免的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值