模型论基础:型,完备公式和孤立型
1. 背景介绍
1.1 模型论的起源与发展
1.1.1 模型论的起源
模型论起源于20世纪初数理逻辑的发展。早期的数理逻辑主要关注形式系统的元理论,如希尔伯特(D.Hilbert)的形式主义和哥德尔(K.Gödel)的不完备性定理等。在这一时期,逻辑学家开始注意到,形式系统的语法结构与其意义之间存在着某种对应关系,由此产生了语义的概念和模型的雏形。
20世纪30年代,塔斯基(A.Tarski)提出了语义真理的概念,并系统地研究了谓词逻辑的语义理论,奠定了模型论的基础。塔斯基引入满足关系的概念,使得语法结构与语义解释联系起来,开创了语义学的新纪元。
1.1.2 模型论的发展历程
20世纪50年代,在鲁宾逊(A.Robinson)和 Henkin(L.Henkin) 等人的推动下,模型论进入了蓬勃发展阶段。鲁宾逊提出了非标准分析的理论,将无穷小量引入分析学,建立了连续统的非标准模型。 Henkin证明了形式系统的完全性定理,揭示了语法推演与语义蕴涵的一致性。
20世纪60-70年代是模型论的黄金时期。Keisler(H.J.Keisler),Shelah(S.Shelah)等一批杰出的数理逻辑学家推动了模型论的快速发展。Morley(M.Morley)证明了 可数理论的范畴性定理,Shelah创立了稳定理论,极大地丰富了模型论的内容。模型论在此期间确立了作为数理逻辑一个