(如何从一个列表中随机抽样)np.random.choice(),random.sample()

本文探讨了numpy库中的np.random.choice()和random模块的sample()函数在列表抽样上的区别和应用。重点介绍了choice()函数的灵活性,它支持有放回和无放回抽样,并能指定概率分布。同时,通过示例展示了如何从列表中抽取指定数量的元素。对于random.sample(),文章指出其默认为不放回抽样,适合均匀抽样。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

个人觉得np.random.choice()功能更加强大,random.sample()可以做到的,前者都可以做到。

numpy

这个函数非常有用,可以从一个列表中抽样。

其一共有4个参数:

choice(a, size=None, replace=True, p=None)

a :列表或者整数

若为整数,则等价于一个列表,因为函数会自动先把整数a变成列表np.arange(a)

总之,其实就是一个列表。

size : 整数或元组
整数表示需要从列表a中抽样多少个元素。
元组(m, n, k)表示抽样m * n * k的元素。

replace : 布尔值
是否为有放回抽样

p : 列表
对列表a每一个元素赋予被抽取的概率。

栗子:从列表a中有放回抽样4个元素。

a=[1,2,3,4,5,6]
print("抽样结果:")
print(np.random.choice(a,4,replace=True))

在这里插入图片描述

random.sample()

import random
random.sample([1,1,2],2)#强制为不放回抽样,而且是均匀抽样。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值