Mysql中索引的相关问题

本文探讨了Mysql中索引的作用,分析了不同数据结构如二叉树、红黑树、Hash表和B-Tree在索引中的应用。在大数据量下,B+树因其深度最低和叶子节点间的指针而成为优选,适合范围查找。相比之下,Hash查找虽快,但不适用于范围查询。冗余索引和data元素移至叶子节点的设计是为了提高存储效率和查询性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

索引是帮助Mysql高效的获取数据的排好序的数据结构;
索引的数据结构:
二叉树
红黑树
Hash表
B-Tree

在这里插入图片描述
以上图为例:若使用Col2作为索引,则可以根据二叉排序树更快地寻找的数据;
但是若以Col1为索引(类似于自增/减的索引)则:

在这里插入图片描述
此时的树状结构类似于链表,因此也并没有优化数据的查询速度,和没有创建索引逐行查找没有本质上的区别;

此时若采用红黑树结构:
在这里插入图片描述
由图可见红黑树也是一种二叉平衡树;
此时虽然红黑树比二叉树有一些优化,但是当数据到达一定的量级(海量数据),红黑树的高度还是很高,效率仍是很低;(数据量越大,效率越低)

由红黑树的不足得出的思考改进:
可以在每个节点存放多个索引,则可以很好地降低树的高度;
在这里插入图片描述
B-树:
在这里插入图片描述
查找过程:每次一次性地将某个节点load到RAM中进行比较(更快);
当然一次load不能load过多的数据,Mysql规定在16KB左右;

B+树(多叉平衡树):
在这里插入图片描述

两者的比较:
1.B+树上非叶子节点上没有data,B树有;
2.B+树中每两个叶子节点之间有双向指针,B树没有;

问题1:为什么要有冗余索引,且把data元素从非叶子节点移到叶子节点呢?
将data元素移到叶子节点可以保证每个非叶子节点上横向可以存储更多的索引元素,也就意味着每个节点分叉也就更多了,因此可以保证树的深度最低;
(经大致估算,2千多万行的数据,采用B+树,树的高度为3)

问题2:为什么绝大多数情况不适用Hash查找呢?

首先需要提Hash查找,实际上Hash查找的速度比使用B+树的速度更快,但是为什么绝大多数情况不适用Hash查找呢?
看这种情况:
Select * from t where t.col1 >16;
若使用范围查找,则Hash索引并不能很好的支持范围查找;
因此绝大多数使用B+树的结构;

问题3:为什么B+树索引中的叶子节点之间有指针呢?
在这里插入图片描述
若此时想查找col1>20的元素,则在找到20之后,依次依靠指针向右获取所要的数据,极大地提高了范围查找的效率,因为叶子节点之间需要双向的指针;
(采用B树的话则需要重新返回根节点,再去查询,重复这个过程,效率很低)

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
1. 什么是索引? 答:索引是一种数据结构,用于快速查找数据库中特定行的数据。它可以加速查询过程并提高查询效率。 2. 为什么需要索引? 答:索引可以加速查询过程并提高查询效率。当在一个大型表中进行查询时,索引可以帮助数据库引擎快速定位到需要查询的数据行,从而提高查询效率。 3. MySQL中有哪些类型的索引? 答:MySQL中有以下类型的索引: - B-tree索引 - 哈希索引 - 全文索引 - 空间索引 4. 什么是B-tree索引? 答:B-tree索引是一种常用的索引类型,它使用B-tree数据结构来加速查询。B-tree索引可以实现快速的查找、插入和删除操作。 5. 什么是哈希索引? 答:哈希索引是一种基于哈希表的索引类型,它可以提供快速的查找操作。哈希索引适用于等值查询,但不适用于范围查询。 6. 什么是全文索引? 答:全文索引是一种索引类型,用于在文本数据中进行全文搜索操作。全文索引可以加速文本搜索操作,并提高查询效率。 7. 什么是空间索引? 答:空间索引是一种索引类型,用于在空间数据中进行查询操作。空间索引可以加速空间数据查询,并提高查询效率。 8. 如何创建索引? 答:可以使用以下语法在MySQL中创建索引: - CREATE INDEX index_name ON table_name(column_name); - ALTER TABLE table_name ADD INDEX index_name(column_name); 9. 索引如何影响查询性能? 答:索引可以提高查询性能,但如果索引不当使用,则可能会降低查询性能。如果在一个大型表中创建了太多的索引,则会导致更新操作变慢,并且会占用过多的磁盘空间。此外,如果查询条件不涵盖索引列,则查询性能也会下降。 10. 如何评估索引的效率? 答:可以使用EXPLAIN语句来评估索引的效率。EXPLAIN语句可以分析查询语句,并显示查询执行计划,包括使用的索引、扫描的行数、排序方式等信息。通过分析EXPLAIN的结果,可以确定是否需要添加或优化索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值