Description
Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。 作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。
Input
第1行: 两个正整数M和N,用空格隔开
第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草
Output
第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数
Sample Input
2 3
1 1 1
0 1 0
Sample Output
9
输出说明:
按下图把各块土地编号:
1 2 3
4
只开辟一块草地的话,有4种方案:选1、2、3、4中的任一块。开辟两块草地的话,有3种方案:13、14以及34。选三块草地只有一种方案:134。再加把牧场荒废的那一种,总方案数为4+3+1+1=9种。
分析
这可以说是一道经典的状压DP题。
每一行用一个十进制数描述,然后枚举所有状态,判断当前状态是否合法即可。
核心代码详解已写入代码块。
代码
#include<bits/stdc++.h>
using namespace std;
int n, m, a;
int g[(1 << 12) + 7];
int f[(1 << 12) + 7];
int dp[17][(1 << 12) + 7];
int mod = 1e9;
int ans;
inline int read() {
int x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return x * f;
}
bool judge(int x) {
return (!(x & (x << 1))) && (!(x & (x >> 1)));
}//判断x左右是否有相邻的草
int main() {
m = read(), n = read();
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
a = read();
f[i] = (f[i] << 1) + a;
}
}
dp[0][0] = 1;
for (int i = 1; i <= m; i++) {
for (int j = 0; j < (1 << n); j++) {
//枚举所有状态
if (judge(j) && (j & f[i]) == j) {
//状态j & f[i] == j保证j是在肥沃土地上种草
//因为j的每一位1都有一个f[i]的对应的1
for (int k = 0; k < (1 << n); k++) {
//判断上一行的状态是否合法
//因为是从上往下枚举的,所以对当前状态有影响的只有上一行的状态
if (!(k & j)) {
//判断是否存在同一列上有两个1,也就是相邻的草
dp[i][j] = (dp[i][j] + dp[i - 1][k]) % mod;
}
}
}
}
}
for (int i = 0; i < (1 << n); i++) {
ans = (ans + dp[m][i]) % mod;
}
printf("%d", ans);
return 0;
}