【状压DP】P1879 玉米田Corn Fields

20 篇文章 2 订阅
这篇博客介绍了如何解决一个关于在特定条件下计算牧场种植方案的数学问题。 Farmer John面临一块长方形牧场,需要确定在哪些不相邻的土地上种植草。问题转化为计算所有可能的合法种植组合,不包括相邻的地块。博客提到了输入输出示例,并强调这是一个经典的状压动态规划(DP)问题。博主提供了分析和核心代码,帮助读者理解解题思路。
摘要由CSDN通过智能技术生成

Description

Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。 作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。

Input

第1行: 两个正整数M和N,用空格隔开

第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草

Output

第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9
输出说明:
按下图把各块土地编号:
1 2 3
4
只开辟一块草地的话,有4种方案:选1、2、3、4中的任一块。开辟两块草地的话,有3种方案:13、14以及34。选三块草地只有一种方案:134。再加把牧场荒废的那一种,总方案数为4+3+1+1=9种。

分析

这可以说是一道经典的状压DP题。

每一行用一个十进制数描述,然后枚举所有状态,判断当前状态是否合法即可。

核心代码详解已写入代码块。

代码

#include<bits/stdc++.h>
using namespace std;
int n, m, a;
int g[(1 << 12) + 7];
int f[(1 << 12) + 7];
int dp[17][(1 << 12) + 7];
int mod = 1e9;
int ans;

inline int read() {
    int x = 0, f = 1; char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
    return x * f;
}

bool judge(int x) {
    return (!(x & (x << 1))) && (!(x & (x >> 1)));
}//判断x左右是否有相邻的草

int main() {
    m = read(), n = read();
    for (int i = 1; i <= m; i++) {
	for (int j = 1; j <= n; j++) {
	    a = read();
	    f[i] = (f[i] << 1) + a;
	}
    }
    
    dp[0][0] = 1;
    for (int i = 1; i <= m; i++) {
	for (int j = 0; j < (1 << n); j++) {
	    //枚举所有状态 
	    if (judge(j) && (j & f[i]) == j) {
	        //状态j & f[i] == j保证j是在肥沃土地上种草
	        //因为j的每一位1都有一个f[i]的对应的1
	        for (int k = 0; k < (1 << n); k++) {
	            //判断上一行的状态是否合法 
	            //因为是从上往下枚举的,所以对当前状态有影响的只有上一行的状态 
	            if (!(k & j)) {
		        //判断是否存在同一列上有两个1,也就是相邻的草 
			dp[i][j] = (dp[i][j] + dp[i - 1][k]) % mod;
		    }
		}
	    }
	}
    }
    
    for (int i = 0; i < (1 << n); i++) {
	ans = (ans + dp[m][i]) % mod;
    }
    printf("%d", ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值