【英语学习】【医学】Unit 10 Tumor

《基础医学英语》读书笔记

常见词根/词缀与词源

词根/词缀含义示例词源
carcin(o)-cancer 癌carcinology 癌学
carcinosarcoma 癌肉瘤
From Ancient Greek καρκίνος (karkínos, “crab”)
注:螃蟹的两个大鳌钳,类似于鼓起的肿瘤
onc(o)-tumor 肿瘤oncogene 癌基因,致癌基因
oncocyte 癌细胞
from Greek onkos ‘lump, mass, bulk’.
sarc(o)-flesh, fleshy 肉,肌sarcocyst 肉孢子囊
sarcoplasm 肌质
Greek sark-, combining form of sarx “flesh”
注:sarcasm 讽刺,挖苦,如针刺肉
prostat(o)-prostate 前列腺prostatitis 前列腺炎
prostatolith 前列腺结石
mid 17th century: via French from modern Latin prostata, from Greek prostatēs ‘one that stands before’, from pro ‘before’ + statos ‘standing’.
ne(o)-new 新neocyte 未成熟白细胞
neopathy 新生物,肿瘤
from Greek neos ‘new’.
prot(o)-primary 原,原始protoblash 胚细胞
protopathy 原发病
from Greek prōtos ‘first’.
leuk(o)-
leuc(o)-
white 白leukocyte 白细胞
leukopathy 白斑病
from Greek leukos ‘white’.
retr(o)-behind 后,在后面retropleural 胸模后的
retroposition 后位
1960s: from French rétro, abbreviation of rétrograde ‘retrograde’ (past, the way things were).
hyp(o)-below 低,不足hypogenesis 发育不全
hypotension 低血压
mid 19th century: abbreviation of hyposulphite (硫代硫酸钠) .
注:先有某个单词,然后把这个单词某部分当作前缀/后缀使用。
-gencarcinogen 致癌物
antigen 抗原
from French -gène (18c.), from Greek -genes "born of, produced by“
注:这里的*-gen表示”可以产生“或者”可以导致“ 词干 的;最早见于oxygen*,表示产生氧气的,即氧气。
-therapytherapy 治疗leukotherapy 白细胞疗法
radiotherapy 放射疗法
mid 19th century: from modern Latin therapia, from Greek therapeia ‘healing’, from therapeuein ‘minister to, treat medically’.
-algiapain, ache 痛cardialgia 心脏痛
aortalgia 主动脉痛
from Greek algos ‘pain’.
tachy-fast, too fast 快,过快tachycardia 心动过速
tachypnea 呼吸急促
from Greek takhus ‘swift’.
ur(o)-urine 尿urine 尿
urography 尿道造影术
From Ancient Greek οὖρον (oûron).
urine; relating to urine and the urinary system.
megal(o)-great 大megalocystis 巨膀胱
megalohepatia 巨肝
from Greek megas, megal- ‘great’.
### 使用深度学习进行医学肿瘤图像分类 #### 方法概述 对于医学肿瘤图像分类,基于深度学习的方法通常遵循一系列标准化流程。这些方法旨在通过自动化手段提升诊断效率和准确性。 #### 数据预处理 在开始构建模型之前,对原始医学图像执行必要的预处理步骤至关重要。这包括但不限于去除噪声、调整对比度以及尺寸统一等措施,从而确保输入数据的一致性和质量[^1]。 #### 模型选择 针对特定类型的肿瘤识别任务,可以选择不同的神经网络架构作为基础框架。例如,在脑部MRI扫描中的肿瘤检测方面,有研究表明联合注册与分割策略能够有效提高定位精度;而在胸部CT影像分析领域,则可能更倾向于采用卷积神经网络(CNNs),尤其是那些专为二维切片设计并优化过的版本[^2][^3]。 #### 训练过程 利用标注完整的大型医疗数据库来训练选定的深度学习模型是非常重要的一步。此阶段的目标是让机器学会区分正常组织与其他病变区域之间的差异特征,并形成有效的决策边界用于后续预测工作。 #### 性能验证 完成初步训练之后,还需要借助独立于训练集之外的新样本进行全面评测。这里会关注诸如敏感性、特异性等多项指标的表现情况,以此衡量系统的整体性能优劣程度。 #### 实际应用部署 一旦确认所开发出来的解决方案具备足够的鲁棒性和可靠性,就可以考虑将其集成至临床环境中去,辅助医生做出更加精准及时的确诊判断。 ```python import torch from torchvision import models, transforms from PIL import Image def classify_tumor(image_path): # 加载预训练模型 (此处以ResNet为例) model = models.resnet50(pretrained=True) preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_image = Image.open(image_path) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) with torch.no_grad(): output = model(input_batch) probabilities = torch.nn.functional.softmax(output[0], dim=0) top_prob, class_idx = torch.topk(probabilities, 1) return { "class": class_idx.item(), "probability": top_prob.item() } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值