13 最大子数组和

21 篇文章 0 订阅
本文分析了使用动态规划解决最大子数组和问题的不同方法,包括标准DP的不完整实现、利用前缀和优化的版本以及分治策略与线段树的应用。重点在于理解问题的无后效性特征和不同解法的效率提升。
摘要由CSDN通过智能技术生成

本题适合动态规划的原因

本题接的重点在

  1. 理解题意
    题目只要求返回结果,不要求得到最大的连续子数组是哪一个,一般用DP解决

  2. 如何定义子问题(如何定义状态)
    存在不确定性的子问题 like:(经过 —— 位置不确定 —— start end不确定)在这里插入图片描述
    确定的子问题 like:
    在这里插入图片描述

  3. 什么是 无后效性
    为了保证计算子问题能够按照顺序、不重复地进行,动态规划要求已经求解的子问题不受后续阶段的影响。这个条件也被叫做无后效性。换言之,动态规划对状态空间的遍历构成一张有向无环图,遍历就是该有向无环图的一个拓扑序。有向无环图中的节点对应问题中的状态,图中的边则对应状态之间的转移,转移的选取就是动态规划中的决策

题解1 不标准动态规划(标准参考labuladong)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        const int s = nums.size();
        if(1 == s) return nums[0];
        // meaning : dp[i] : 以 nums[i]结尾的 最大子数组和 
        vector<int> dp(s);
        // base case
        dp[0] = nums[0];
        // 转移方程
        // 根据题意,i及 i以前的 可能的最大值 要么是nums[i]本身,要么是 i前最大的值 累加上 此位置的值
        // 不标准: dp[s-1]不是最后的结果
        for(int i=1; i < s; i++)
            dp[i] = max(nums[i], nums[i] + dp[i-1]);
        int maxV = INT_MIN;
        for(auto & i : dp){
            maxV = max(maxV, i);
        }
        return maxV;

    }
};

在这里插入图片描述

题解2 优化DP(前缀和)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        const int s = nums.size();
        if(1 == s) return nums[0];
        int res = INT_MIN;
        int pre = 0;
        for(int i=0; i < s; i++){
            pre = max(nums[i], nums[i]+pre);
            res = max(res, pre);
        }     
        return res;
    }
};

在这里插入图片描述

题解3 分治(有时间撸)

不仅可以解决区间 [0,n−1][0, n-1][0,n−1],还可以用于解决任意的子区间 [l,r][l,r][l,r] 的问题。如果我们把 [0,n−1][0, n-1][0,n−1] 分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一棵真正的树之后,我们就可以在 O(log⁡n) 的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在 O(log⁡n)的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是上文提及的一种神奇的数据结构——线段树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值