- 博客(3)
- 收藏
- 关注
翻译 Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
本文提出了一个新颖的方法,旨在优化大语言模型(LLM)在资源密集型视觉-语言预训练中的应用。当前的范式是使用视觉特征作为提示词引导语言模型,集中于找到于文本最相关的视觉特征。所提方法方法不同在关注语言部分,特别是与视觉特征对齐的最优提示词。所提方法引入了 Prompt-Transformer (P-Former),用于预测理想的提示词,它基于语言数据进行训练,不再需要大量图-文数据的成对训练。该策略巧妙地将端到端地视觉-语言训练过程分为一个额外的、独立的阶段。
2024-09-04 17:36:19
275
翻译 【论文阅读】SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
SwAV论文阅读,仅涉及方法部分,如不完整,随时补充
2024-09-02 12:08:59
362
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人