本文主要分析并实现了2种常见的多边形填充算法:逐点法、有序边表法
1.逐点法
在逐点法实现中,用到了两个函数。
其中的实现原理十分简单,不过PointInPolygon(int pointNumOfPolygon, CPoint tarPolygon[], CPoint testPoint)函数的实现比较复杂,但这个函数也十分实用,在后面的三角剖分中也有使用。
算法描述:
(1)将给定多边形输入;
(2)求出多边形的最小包含矩形;
(3)逐点扫描最小矩形的每一点,并判断是否位于多边形内部,从最小点到最大点一次判断,如果在该多边形内部,则将该点上色;
(4)判断位于多边形内部的方法是,过每一点水平向右作射线,与多边形边界求交点,如果交点个数为奇数,则说明该点在多边形内部,偶数则说明在多边形外部。
效果如下:
实现代码:
//逐点法填充
void PointFillpoly(int pNumbers, CPoint *points, CDC *pDC)
{
BoxRect_t polyRect;
polyRect = getPolygonRect(pNumbers, points);
m_pDC->MoveTo(polyRect.minX, polyRect.minY);
m_pDC->LineTo(polyRect.minX, polyRect.maxY);
m_pDC->LineTo(polyRect.maxX, polyRect.maxY);
m_pDC->LineTo(polyRect.maxX, polyRect.minY);
m_pDC->LineTo(polyRect.minX, polyRect.minY);
CPoint testPoint;
//从最小点到最大点一次判断,如果在该多边形内部,则进行填充
for (testPoint.x = polyRect.minX; testPoint.x < polyRect.maxX; testPoint.x++)
for (testPoint.y = polyRect.minY; testPoint.y < polyRect.maxY; testPoint.y++) {
if (PointInPolygon(m_pNumbers, m_pAccord, testPoint))
pDC->SetPixel(testPoint.x, testPoint.y, RGB(255, 255, 255));
}
}
//得到该多边形的最大、最小的y、x值
BoxRect_t getPolygonRect(int pointNumOfPolygon, CPoint tarPolygon[])
{
BoxRect_t boxRect;
boxRect.minX = 50000;
boxRect.minY = 50000;
boxRect.maxX = -50000;
boxRect.maxY = -50000;
for (int i = 0; i < pointNumOfPolygon; i++) {
if (tarPolygon[i].x < boxRect.minX) boxRect.minX = tarPolygon[i].x;
if (tarPolygon[i].y < boxRect.minY) boxRect.minY = tarPolygon[i].y;
if (tarPolygon[i].x > boxRect.maxX) boxRect.maxX = tarPolygon[i].x;
if (tarPolygon[i].y > boxRect.maxY) boxRect.maxY = tarPolygon[i].y;
}
return boxRect;
}
//判断点是否位于区域内
BOOL PointInPolygon(int pointNumOfPolygon, CPoint tarPolygon[], CPoint testPoint)
{
if (pointNumOfPolygon < 3)
return false;
bool inSide = FALSE;
float lineSlope, interSectX;
int i = 0, j = pointNumOfPolygon - 1;
for (i = 0; i < pointNumOfPolygon; i++) {
if ((tarPolygon[i].y < testPoint.y && tarPolygon[j].y >= testPoint.y ||
tarPolygon[j].y < testPoint.y && tarPolygon[i].y >= testPoint.y) &&
(tarPolygon[i].x <= testPoint.x || tarPolygon[j].x <= testPoint.x)) {
if (tarPolygon[j].x != tarPolygon[i].x) {
lineSlope = (float)(tarPolygon[j].y - tarPolygon[i].y) / (tarPolygon[j].x - tarPolygon[i].x);
interSectX = (int)(tarPolygon[i].x + (testPoint.y - tarPolygon[i].y) / lineSlope);
}
else
interSectX = tarPolygon[i].x;
if (interSectX < testPoint.x)
inSide = !inSide;
}
j = i;
}
return inSide;
}
2.有序边表法
首先给出有序边表法中定义使用的变量。
int m_Begin, m_End, m_edgeNumbers, m_Scan; //求交边集指针,有效边数,当前扫描位置
float m_yMax[N], m_yMin[N], m_Xa[N], m_Dx[N]; //每条边y最大值,y最小值,每条边与扫描线x的交点,每条边斜率倒数
基本思想:用水平扫描线从上到下(或从下到上)扫描由多条首尾相连的线段构成的多边形,每根扫描线与多边形的某些边产生一系列交点。将这些交点按照x坐标排序,将排序后的点两两成对,作为线段的两个端点,以所填的颜色画水平直线。
- 在实现中首先需要对多边形的每一条边进行处理操作,因为是采用水平线扫描填充,所以对于水平线不做处理。对其余边根据端点的y值大小进行排序,保存yMax,yMin,Xa(相对应的x坐标)以及Dx(斜率的倒数)。
- 在进行扫描的过程中,很重要的一部分操作便是求交边集指针的移动。初始状态位0,在扫描线开始向下移动后,调用Include()函数,检查是否有边进入扫描线交集(即判断所有y最大值大于扫描线当前y值的边线),此时将m_End++,即尾指针向后移动。在Include()函数中,也会调整起始点位置,将Dx调整为位移量。
- 之后调用UpdateXvalue()函数,判断是否有边退出求交边集。
- 如果没有边退出,则移动x,并根据x值大小进行排序。
- 有边退出,更新数组,删除该边,m_Begin++,即头指针向后移动。
- 调用pFillScan(pDC)函数,进行填充。
- m_Scan–,回到第二步进行循环,直到m_Begin==m_End。
算法描述:
- 建立边表的方法:
(1)与x轴平行的边不计入;
(2)多边形的顶点分为两大类:一类是局部极值点,另外一类是非极值点。当扫面线与第一类顶点相交时,应看作两个点;而当扫描线与第二类顶点相交时,应视为一个点,对于极值点则要记录两条边;
(3)扫描线按照y轴从低到高顺次记录;
(4)一条边按照y轴的高低记录;
(5)多条边以x轴递增顺序记录;
- 算法流程:
1、根据给出的多边形顶点坐标,建立NET表,求出顶点坐标中最大y值ymax和最小y值ymin。
2、初始化AET表指针,使它为空。
3、执行下列步骤直至NET和AET都为空.
(1)如NET中的第y类非空,则将其中的所有边取出并插入AET中;
(2)如果有新边插入AET,则对AET中各边排序;
(3)对AET中的边两两配对,(1和2为一对,3和4为一对,…),
将每对边中x坐标按规则取整,获得有效的填充区段,再填充.
(4)将当前扫描线纵坐标y值递值1;
(5)如果AET表中某记录的ymax=yj,则删除该记录 (因为每条边被看作下闭上开的);
(6)对AET中剩下的每一条边的x递增dx,即x’ = x+ dx .
效果如下:
实现代码如下:
//有序边表法填充
void Fillpolygon(int pNumbers, CPoint* points, CDC* pDC)
{
m_edgeNumbers = 0;
pLoadPolygon(pNumbers, points); // Polygon Loading, calculates every edge's m_yMax[],m_yMin[],m_Xa[],m_Dx[]
//求交边集范围,因为数组已经根据y值大小进行边的排序,所以end向后移动即代表有边进入,start向后移动,代表有边退出
m_Begin = m_End = 0;
m_Scan = (int)m_yMax[0]; //从顶向下扫描
Include(); //检查是否有边进入扫描线
UpdateXvalue(); //检查是否有边退出扫描线
while (m_Begin != m_End) {
pFillScan(pDC);
m_Scan--;
Include();
UpdateXvalue();
}
}
void pLoadPolygon(int pNumbers, CPoint* points)
{
float x1, y1, x2, y2;
x1 = points[0].x; y1 = points[0].y + 0.5;
for (int i = 1; i < pNumbers; i++) {
x2 = points[i].x; y2 = points[i].y + 0.5;
if (abs(int(y2 - y1)) >= 0) //水平线不做处理
{
pInsertLine(x1, y1, x2, y2);
x1 = x2; y1 = y2;
}
else
x2 = x1;
}
}
void pInsertLine(float x1, float y1, float x2, float y2)
{
int i;
float Ymax, Ymin;
Ymax = (y2 > y1) ? y2 : y1;
Ymin = (y2 < y1) ? y2 : y1;
i = m_edgeNumbers;
//根据y值的大小,进行排序插入,大的在前面
while (i != 0 && m_yMax[i - 1] < Ymax) {
m_yMax[i] = m_yMax[i - 1];
m_yMin[i] = m_yMin[i - 1];
m_Xa[i] = m_Xa[i - 1];
m_Dx[i] = m_Dx[i - 1];
i--;
}
m_yMax[i] = Ymax;
m_yMin[i] = Ymin;
if (y2 > y1) m_Xa[i] = x2; //根据y大小确定Xa的值,y大的会先于扫描线相交
else m_Xa[i] = x1;
m_Dx[i] = (x2 - x1) / (y2 - y1); //斜率的倒数
m_edgeNumbers++;
}
void Include()
{
//end向后移动,找出所有边最高点y值大于当前扫描线的边,看是否有新的边进入交集
while (m_End < m_edgeNumbers && m_yMax[m_End] >= m_Scan) {
//有边进入,调整起始点位置,然后将Dx调整为位移量
m_Xa[m_End] = m_Xa[m_End] + (-0.5) * m_Dx[m_End];
m_Dx[m_End] = -m_Dx[m_End];
m_End++;
}
}
void UpdateXvalue()
{
int i, start = m_Begin;
for (i = start; i < m_End; i++) {
if (m_Scan > m_yMin[i]) {
//当前边没有退出,则移动x,然后在进行排序
m_Xa[i] += m_Dx[i];
pXsort(m_Begin, i);
}
else {
//有边退出,更新数组,然后begin++
for (int j = i; j > m_Begin; j--) {
m_yMin[j] = m_yMin[j - 1];
m_Xa[j] = m_Xa[j - 1];
m_Dx[j] = m_Dx[j - 1];
}
m_Begin++;
}
}
}
void pXsort(int Begin, int i)
{
float temp;
while (i > Begin&& m_Xa[i] < m_Xa[i - 1]) {
temp = m_Xa[i]; m_Xa[i] = m_Xa[i - 1]; m_Xa[i - 1] = temp;
temp = m_Dx[i]; m_Dx[i] = m_Dx[i - 1]; m_Dx[i - 1] = temp;
temp = m_yMin[i]; m_yMin[i] = m_yMin[i - 1]; m_yMin[i - 1] = temp;
i--;
}
}
void pFillScan(CDC* pDC)
{
int x, y;
FillPolyDoc* pDoc = GetDocument();
for (int i = m_Begin; i < m_End; i += 2) {
if (pDoc->m_displayMode == 1) {
pDC->MoveTo(m_Xa[i], m_Scan);
pDC->LineTo(m_Xa[i + 1], m_Scan);
}
else if (pDoc->m_displayMode == 4) { //图案填充
y = m_Scan;
for (int x = m_Xa[i]; x < m_Xa[i + 1]; x++)
if (m_patternData[y % 12][x % 12])
pDC->SetPixel(x, y, RGB(255, 0, 0));
}
}
}