基本型、
现在小瓜想走上一个一共有n级的台阶,由于小瓜的腿比较短,他一次只能向上走1级或者2级台阶。小瓜想知道他有多少种方法走上这n级台阶,你能帮帮他吗?
收起
输入
一行一个整数n(n<=40),表示一共有n级台阶。
输出
一行一个整数,表示小瓜上台阶的方案数的结果。
输入样例
3
输出样例
3
举这个题主要是运用递归算法,适合于数目比较小的基础版上台阶问题,这个代码虽然简单,但体现的思想很重要:
分析问题,先走第一步——>分类——>分解成类似的子问题——>找出递推式
代码如下(要注意寻找出递归边界):
#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include <algorithm>
using namespace std;
typedef long long ll;ll s;
int jc(ll x);
int main()
{
ll n,m;
cin>>n;
cout<<(jc(n));
}
int jc(ll x)
{
if(x==0||x==1) return 1;//边界很重要
else return jc(x-1)+jc(x-2);
}
进阶型
现在小瓜想走上一个一共有n级的台阶,由于小瓜的腿比较短,他一次只能向上走1级或者2级台阶。小瓜想知道他有多少种方法走上这n级台阶,你能帮帮他吗?
收起
输入
一行一个整数n(n<=100000),表示一共有n级台阶。
输出
一行一个整数,表示小瓜上台阶的方案数*对100003取余*的结果。
输入样例
3
输出样例
3
这时采用递归就不大好了,因为会产生大量的重复计算,不过可以加一个数组来记忆算过的数字,叫记忆化搜索。也可以采用递推式来计算。
Code
#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include <algorithm>
#define ll long long
using namespace std;
int main()
{
double n,m;
ll a0=0,a1=1;double i;
while(cin>>n)
{i=0;a0=0,a1=1;
for( i=0;i<n;i+=2)
{
a0=(a0+a1)%100003;
a1=(a0+a1)%100003;
}
if(i==n) cout<<a1<<endl;
else cout<<a0<<endl;}
}
//下边是借鉴的代码,开个数组都保存下来了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a[100010];
int main()
{
int m,i;
a[0]=1,a[1]=2;
for(i=2;i<100010;i++)
{
a[i-1]%=100003;
a[i-2]%=100003;
a[i]=(a[i-1]+a[i-2])%100003;
}
cin>>m;
cout<<a[m-1]<<endl;
return 0;
}
最后安利一波矩阵快速幂
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
typedef vector<long long> vec;
typedef vector<vec> mat;
const ll N = 100003;
mat mul(mat a,mat b) //矩阵乘法
{
mat c(a.size(),vec(b[0].size()));
for(ll i=0;i<a.size();i++)
{
for(ll k=0;k<b.size();k++)
{
for(ll j=0;j<b[0].size();j++)
c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N;
} }
return c;
}
mat solve_pow(mat a,ll n) //快速幂
{
mat b(a.size(),vec(a.size()));
for(ll i=0;i<a.size();i++)
b[i][i]=1;
while(n>0)
{
if(n & 1)
b=mul(b,a);
a=mul(a,a);
n >>= 1;
}
return b;
}
ll n;
void solve()
{
mat a(2,vec(2));
while(~scanf("%lld",&n) && n!=-1)
{
a[0][0]=1,a[0][1]=1;
a[1][0]=1,a[1][1]=0;
a=solve_pow(a,n+1);
printf("%lld\n",a[1][0]);
}
}
int main()
{
solve();
return 0;
}