上台阶(基础—>进阶)

基本型

现在小瓜想走上一个一共有n级的台阶,由于小瓜的腿比较短,他一次只能向上走1级或者2级台阶。小瓜想知道他有多少种方法走上这n级台阶,你能帮帮他吗?

收起

输入

一行一个整数n(n<=40),表示一共有n级台阶。

输出

一行一个整数,表示小瓜上台阶的方案数的结果。

输入样例

3

输出样例

3

举这个题主要是运用递归算法,适合于数目比较小的基础版上台阶问题,这个代码虽然简单,但体现的思想很重要:

分析问题,先走第一步——>分类——>分解成类似的子问题——>找出递推式

代码如下(要注意寻找出递归边界):

#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include <algorithm>
using namespace std;
typedef  long long  ll;ll s;
int jc(ll x);
int main()
{
    ll n,m;
    cin>>n;
    cout<<(jc(n));
}
int jc(ll x)
{
    if(x==0||x==1)   return 1;//边界很重要
    else  return  jc(x-1)+jc(x-2);
}

进阶型

现在小瓜想走上一个一共有n级的台阶,由于小瓜的腿比较短,他一次只能向上走1级或者2级台阶。小瓜想知道他有多少种方法走上这n级台阶,你能帮帮他吗?

收起

输入

一行一个整数n(n<=100000),表示一共有n级台阶。

输出

一行一个整数,表示小瓜上台阶的方案数*对100003取余*的结果。

输入样例

3

输出样例

3

    这时采用递归就不大好了,因为会产生大量的重复计算,不过可以加一个数组来记忆算过的数字,叫记忆化搜索。也可以采用递推式来计算。

Code

#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include <algorithm>
#define ll  long long
using namespace std;
int main()
{

	double n,m;
	ll a0=0,a1=1;double i;
	while(cin>>n)
	{i=0;a0=0,a1=1;
	for( i=0;i<n;i+=2)
	{
		a0=(a0+a1)%100003;
		a1=(a0+a1)%100003;
	}
	if(i==n) cout<<a1<<endl;
	else cout<<a0<<endl;}
}

//下边是借鉴的代码,开个数组都保存下来了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a[100010];
int main()
{
	int m,i;
	a[0]=1,a[1]=2;
	for(i=2;i<100010;i++)
	{
		a[i-1]%=100003;
		a[i-2]%=100003;
		a[i]=(a[i-1]+a[i-2])%100003;
	}
	cin>>m;
	cout<<a[m-1]<<endl;
	return 0;
}

最后安利一波矩阵快速幂

#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
typedef vector<long long> vec;
typedef vector<vec> mat;
const ll N = 100003;
mat mul(mat a,mat b)  //矩阵乘法
{
   mat c(a.size(),vec(b[0].size()));
    for(ll i=0;i<a.size();i++)

    {
        for(ll k=0;k<b.size();k++)
        {
            for(ll j=0;j<b[0].size();j++)

                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N;
}    }

return c;

}



mat solve_pow(mat a,ll n) //快速幂

{

    mat b(a.size(),vec(a.size()));

    for(ll i=0;i<a.size();i++)

        b[i][i]=1;

    while(n>0)

    {

        if(n & 1)

            b=mul(b,a);

        a=mul(a,a);

        n >>= 1;

    }



    return b;

}

ll n;

void solve()

{

    mat a(2,vec(2));

    while(~scanf("%lld",&n) && n!=-1)

    {

        a[0][0]=1,a[0][1]=1;

        a[1][0]=1,a[1][1]=0;

        a=solve_pow(a,n+1);

        printf("%lld\n",a[1][0]);

    }

}

int main()

{

    solve();

    return 0;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值