同余算法概念

同余

定义

若整数a和整数b除以正整数m的余数相等,则称a,b模m同余 a ≡ b ( m o d    m ) a\equiv b(mod~~m) ab(mod  m)

同余类与剩余系

同余类

{a+km}所有数模m都是a,该集合为模m的同余类,简记为 a ‾ \overline{a} a

完全剩余系

有m个模m的同余类分别为 0 ‾ , 1 ‾ , ⋯   , m − 2 ‾ , m − 1 ‾ \overline{0},\overline{1},\cdots,\overline{m-2},\overline{m-1} 0,1,,m2,m1,他们构成了m的完全剩余系

简化剩余系

1~m中与m互质的数代表的同余类有 ϕ ( m ) \phi(m) ϕ(m)构成了m的简化剩余系

费马小定理

若 p 是 质 数 , 则 对 于 任 意 整 数 a , 有 a p ≡ a ( m o d    p ) 若p是质数,则对于任意整数a,有a^p\equiv a(mod~~p) pa,apa(mod  p)

欧拉定理

若 正 整 数 a , n 互 质 , 则 a ϕ ( n ) ≡ 1 ( m o d    n ) 若正整数a,n互质,则a^{\phi(n)}\equiv 1(mod~~n) a,naϕ(n)1(mod  n)

欧拉定理推论

若 正 整 数 a , n 互 质 , 则 a b ≡ a b   m o d   ϕ ( n ) ( m o d    n ) 若正整数a,n互质,则a^{b}\equiv a^{b~mod~\phi(n)}(mod~~n) a,nabab mod ϕ(n)(mod  n)

注意

许多计数类题目要求我们把答案对质数取模后输出,面对加减乘的式子,可以先把a,b分别对p取模后计算
面对乘方公式的时候根据欧拉定理的推论,可以先把底数对p求模,再将指数对p的欧拉公式取模,在计算乘方。

当a,n不一定互质的时候且b> ϕ ( n ) \phi(n) ϕ(n)时,有 a b ≡ a b   m o d   ϕ ( n ) + ϕ ( n ) ( m o d    n ) a^{b}\equiv a^{b~mod~\phi(n)+\phi(n)}(mod~~n) abab mod ϕ(n)+ϕ(n)(mod  n)

这意味着即使底数和模数不互质,也可以将其缩小至容易计算的范围

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值