机器学习之线性回归模型

本文详细介绍了线性回归模型,包括平方误差函数作为成本函数和梯度下降算法用于寻找最优参数。讨论了学习速率的影响以及如何通过特征缩放与归一化提升模型性能。还提到了多项式回归和正规方程法作为替代解决方案,并分析了两者适用场景。此外,解释了矩阵不可逆问题的原因及解决策略。
摘要由CSDN通过智能技术生成

线性回归模型

我们可以使用成本函数(cost function)来衡量预测函数(hypothesis function)的准确性。

找寻一个成本函数最小的线性回归方程

平方误差函数:Squared error function

在这里插入图片描述

梯度下降算法:Gradient Descent
公式

for(j:0->1)

在这里插入图片描述

α为学习速度,可理解为下降过程中的步长

随着逐步逼近最低点,偏导会变小,进而导致步长变小,避免了一部分因步长过大而越过极值点的情况

而因为成本函数均为凸函数(?),所以只存在一个全局最优解(没有局部最优)

将偏导展开之后:(每一步同时更新θ0θ1)

在这里插入图片描述

多元线性回归

变量定义:

在这里插入图片描述

以矩阵乘法的形式表示预测函数(注意转置):

在这里插入图片描述

注意把n+1维的矩阵想象成为一个单一变量(复合函数?)

多维梯度下降算法:

在这里插入图片描述

实际应用技巧
特征缩放与归一

如果在线性回归中,多个特征值范围相差很大,则会让误差函数的图形(等高线图)变为类似椭圆的形状,使用梯度下降算法时,会经过更多次的迭代才能逼近最优值。

特征缩放:即将每个变量的变化范围控制得尽量相似,一般是朝 − 1 < x < 1 -1<x<1 1<x<1逼近

特征归一:则是使变量的最大值与最小值之和(变化中心)向0逼近

常用形式:
在这里插入图片描述

学习速率(α)的选择

α过小,则下降速度过慢

α过大,则可能越过最优值

常用做法:以一定的倍率选择α,画出J(α)–α曲线,快速获取最优α值

多项式回归

不一定要用直线的形式去拟合,可以采用多项式函数作为假设函数(此时特征的缩放与归一尤为重要)

另也可以将多个特征值糅合成为一个特征值进行考虑

正规方程法:Normal Equation

可以利用矩阵和公式一步求出 θ θ θ的最优值

公式

在这里插入图片描述

关于X矩阵的构建,需要先增加一列 θ 0 θ0 θ0,然后每一行代表一组完整的 θ θ θ变量,一共m行

最终形成一个m行n+1列的矩阵

而y是一个m维列向量

公式实际上是对y乘了X的逆矩阵,前面一整块是为了构造一个可逆的方阵出来

和梯度下降法的辨析

在这里插入图片描述

梯度下降法的应用更为广泛,在这类问题中数据范围不大的情况下正规方程法为更优解法

数据范围以 1 e 5 1e5 1e5为界限

对于矩阵不可逆问题(很少)

一般会是两种情况造成:

  1. 有几个维度的特征值构成了线性相关性
  2. 数据集太小而特征值太多(可以使用正则化的方法)(联系线性代数矩阵的秩理解)

在编程求解过程中可以使用求伪逆函数来避免这种情况

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值