时间复杂度:指算法执行语句的次数,而并不是计算程序具体运行的时间。
空间复杂度:指运行完一个程序所需内存的大小。
稳定性:指待排序的序列中有两元素相等,排序之后它们的先后顺序不变。
冒泡排序
冒泡排序算法的原理如下:
比较相邻的两个元素,如果前者比后者大(反之倒序),则交换。
对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。
针对所有的元素重复以上的步骤。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
插入排序
将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序。
排序分三步走:
最初挡板是在数组的最左边,保证已排序区间里一个数都没有,或者也可以包含一个数;
核心思想就是:依次遍历未排序区间里的元素,在已排序区间里找到正确的位置插入;
重复这个过程,直到未排序区间为空。
选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
排序分三步走:
首先从原始数组中选择最小的一个数据,将其和位于第1个位置的数据交换。
接着从剩下的n-1个数据中选择次小的1个元素,将其和第2个位置的数据交换。
然后,这样不断重复,直到最后两个数据完成交换。最后,便完成了对原始数组的从小到大的排序。
快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
排序方法:
首先选一个基准 pivot,然后过一遍数组,
把小于 pivot 的都挪到 pivot 的左边,
把大于 pivot 的都挪到 pivot 的右边。
这样一来,这个 pivot 的位置就确定了,也就是排好了 1 个元素。
然后对 pivot 左边 的数排序,
对 pivot 右边 的数排序,
就完成了。