你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai,
bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。 请你判断是否可能完成所有课程的学习?如果可以,返回
true ;否则,返回 false 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]] 输出:true 解释:总共有 2 门课程。学习课程 1
之前,你需要完成课程 0 。这是可能的。 示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]] 输出:false 解释:总共有 2
门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
拓扑排序
解析:如果发现这幅有向图中存在环,那就说明课程之间存在循环依赖,肯定没办法全部上完;反之,如果没有环,那么肯定能上完全部课程。
C++语言的
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
int n=prerequisites.size();
if(n==0) return true;
vector<int> indegree(numCourses);//记录所有结点入度
vector<vector<int>> adjacency(numCourses);//邻接矩阵,先修课程->后续课程
queue<int> help;//统计所有入度为0的点
for(int i=0;i<n;i++){
indegree[prerequisites[i][0]]++;//统计需要先修课程的结点的入度
adjacency[prerequisites[i][1]].push_back(prerequisites[i][0]);//建立邻接矩阵
}
for(int i=0;i<numCourses;i++){
if(indegree[i]==0){
help.push(i);
}
}
int count=0;//已学的课程数
while(!help.empty()){
int visited=help.front();
count++;
help.pop();
for(int i=0;i<adjacency[visited].size();i++){
indegree[adjacency[visited][i]]--;
if(indegree[adjacency[visited][i]]==0){
help.push(adjacency[visited][i]);
}
}
}
return count==numCourses;
}
};
java语言的
class Solution {
boolean[] onPath;
boolean[] vistied;
boolean hascyle=false;
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] graph=buildGraph(numCourses,prerequisites);
vistied=new boolean[numCourses];
onPath=new boolean[numCourses];
for(int i=0;i<numCourses;i++){
traverse(graph,i);
}
return !hascyle;
}
//遍历
public void traverse(List<Integer>[] graph,int s){
if(onPath[s]){
hascyle=true;//出现环
}
if(vistied[s] || hascyle){
return;// 如果已经找到了环,也不用再遍历了
}
vistied[s]=true;
onPath[s]=true;
for(int t:graph[s]){
traverse(graph,t);
}
onPath[s]=false;
}
//建图
List<Integer>[] buildGraph(int numCourses, int[][] prerequisites){
List<Integer>[] graph=new LinkedList[numCourses];
for(int i=0;i<numCourses;i++){
graph[i]=new LinkedList<>();
}
for(int[] edge:prerequisites){
int from=edge[1];
int to=edge[0];
graph[from].add(to);
}
return graph;
}
}