力扣134. 加油站(JAVA)

134. 加油站图解法

难度中等807

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:

  • 如果题目有解,该答案即为唯一答案。
  • 输入数组均为非空数组,且长度相同。
  • 输入数组中的元素均为非负数。

示例 1:

输入: 
gas  = [1,2,3,4,5]
cost = [3,4,5,1,2]

输出: 3

解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: 
gas  = [2,3,4]
cost = [3,4,3]

输出: -1

解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

解析:

汽车进入站点i可以加gas[i]的油,离开站点会损耗cost[i]的油,那么将gas[i]-cost[i]作为经过站点的油量的变化值,

图片

这样题目就可以描述为一个环形数组,需要判断这个环形数组能否找到一个起点start,使得从这个起点开始的累加和一直大于等于0;

先把0作为起点,画图

图片

显然,上图将 0 作为起点肯定是不行的,因为sum在变化的过程中小于 0 了,不符合我们「累加和一直大于等于 0」的要求。

那如果 0 不能作为起点,谁可以作为起点呢?

看图说话,图像的最低点最有可能可以作为起点:

图片

如果把这个「最低点」作为起点,就是说将这个点作为坐标轴原点,就相当于把图像「最大限度」向上平移了

再加上这个数组是环形数组,最低点左侧的图像可以接到图像的最右侧:

图片

这样,整个图像都保持在 x 轴以上,所以这个最低点 4,就是题目要求我们找的起点。

不过,经过平移后图像一定全部在 x 轴以上吗?不一定,因为还有无解的情况:

如果sum(gas[...]) < sum(cost[...]),总油量小于总的消耗,那肯定是没办法环游所有站点的

代码
class Solution {
    public int canCompleteCircuit(int[] gas, int[] cost) {
        int n=gas.length;
        int start=0;
        // 相当于图像中的坐标点和最低点
        int sum=0,min_sum=0;
        for(int i=0;i<n;i++){
            sum+=gas[i]-cost[i];
            if(sum<min_sum){
            // 经过第 i 个站点后,使 sum 到达新低
            // 所以站点 i + 1 就是最低点(起点)
                start=i+1;
                min_sum=sum;
            }
        }
        if(sum<0) return -1; // 总油量小于总的消耗,无解
        // 环形数组特性
        return start==n? 0:start;
    }
}
134. 加油站贪心法

关键结论:如果选择站点i作为起点「恰好」无法走到站点j,那么ij中间的任意站点k都不可能作为起点

假设tank记录当前油箱中的油量,如果从站点i出发(tank = 0),走到j时恰好出现tank < 0的情况,那说明走到i, j之间的任意站点k时都满足tank > 0,对吧。

如果把k作为起点的话,相当于在站点ktank = 0,那走到j时必然有tank < 0,也就是说k肯定不能是起点。

拜托,从i出发走到k好歹tank > 0,都无法达到j,现在你还让tank = 0了,那更不可能走到j了对吧。

代码
class Solution {
    public int canCompleteCircuit(int[] gas, int[] cost) {
        int n=gas.length;
        int sum=0;
        int tank=0;
        int start=0;
        for(int i=0;i<n;i++){
            sum+=gas[i]-cost[i];
        }
        if(sum<0) return -1;
        for(int i=0;i<n;i++){
            tank+=gas[i]-cost[i];
            if(tank<0){
                // 无法从 start 走到 i
            // 所以站点 i + 1 应该是起点
                start=i+1;
                tank=0;
            }
        }
    return start==n? 0:start;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值