134. 加油站图解法
难度中等807
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
解析:
汽车进入站点i可以加gas[i]的油,离开站点会损耗cost[i]的油,那么将gas[i]-cost[i]作为经过站点的油量的变化值,
这样题目就可以描述为一个环形数组,需要判断这个环形数组能否找到一个起点start,使得从这个起点开始的累加和一直大于等于0;
先把0作为起点,画图
显然,上图将 0 作为起点肯定是不行的,因为sum
在变化的过程中小于 0 了,不符合我们「累加和一直大于等于 0」的要求。
那如果 0 不能作为起点,谁可以作为起点呢?
看图说话,图像的最低点最有可能可以作为起点:
如果把这个「最低点」作为起点,就是说将这个点作为坐标轴原点,就相当于把图像「最大限度」向上平移了。
再加上这个数组是环形数组,最低点左侧的图像可以接到图像的最右侧:
这样,整个图像都保持在 x 轴以上,所以这个最低点 4,就是题目要求我们找的起点。
不过,经过平移后图像一定全部在 x 轴以上吗?不一定,因为还有无解的情况:
如果sum(gas[...]) < sum(cost[...])
,总油量小于总的消耗,那肯定是没办法环游所有站点的。
代码
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int n=gas.length;
int start=0;
// 相当于图像中的坐标点和最低点
int sum=0,min_sum=0;
for(int i=0;i<n;i++){
sum+=gas[i]-cost[i];
if(sum<min_sum){
// 经过第 i 个站点后,使 sum 到达新低
// 所以站点 i + 1 就是最低点(起点)
start=i+1;
min_sum=sum;
}
}
if(sum<0) return -1; // 总油量小于总的消耗,无解
// 环形数组特性
return start==n? 0:start;
}
}
134. 加油站贪心法
关键结论:如果选择站点i
作为起点「恰好」无法走到站点j
,那么i
和j
中间的任意站点k
都不可能作为起点。
假设
tank
记录当前油箱中的油量,如果从站点i
出发(tank = 0
),走到j
时恰好出现tank < 0
的情况,那说明走到i, j
之间的任意站点k
时都满足tank > 0
,对吧。如果把
k
作为起点的话,相当于在站点k
时tank = 0
,那走到j
时必然有tank < 0
,也就是说k
肯定不能是起点。拜托,从
i
出发走到k
好歹tank > 0
,都无法达到j
,现在你还让tank = 0
了,那更不可能走到j
了对吧。
代码
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int n=gas.length;
int sum=0;
int tank=0;
int start=0;
for(int i=0;i<n;i++){
sum+=gas[i]-cost[i];
}
if(sum<0) return -1;
for(int i=0;i<n;i++){
tank+=gas[i]-cost[i];
if(tank<0){
// 无法从 start 走到 i
// 所以站点 i + 1 应该是起点
start=i+1;
tank=0;
}
}
return start==n? 0:start;
}
}