题目
01背包问题参考动态规划详解-背包问题(超简单理解加区分01背包和完全背包)
首先判断加和后的奇偶性 如果为奇数无法划分。
背包的目标值是和的一半,如果能正好装满和的一半则能划分
此时用boolen类型的dp数组,dp[0]赋为true,然后01背包模板dp
dp方程为 dp[j] = dp[j] 或者 dp[j-nums[i]]; 如果之前dp[j]为true则为true,或者dp[j-nums[i]]可以正好装满当前dp[j]也为true
public boolean canPartition(int[] nums) {
int sum = 0;
for (int n:nums)
sum+=n;
if ((sum & 1) == 1) return false;//和为奇数无法划分
int target = sum/2;//背包要装的目标值
boolean dp[] = new boolean[target+1];
dp[0] = true;//dp入口
for (int i = 0; i < nums.length; i++) {//01背包板子
for (int j = target; j >= nums[i]; j--) {
if (dp[target] == true) return true;
//上一层的dp[j] 或者 当前的dp[j-nums[i]]是否能正好装满
dp[j] = dp[j] || dp[j-nums[i]];
}
}
return dp[target];
}