插入算法的实现思路
假设我们要在第3个位置(i=3)上插入某一个数,顺序表初始化为P=(1,2,3,4,5,6)。我们可以根据下面的图示理解整个算法过程。
需要注意的是,插入位置i是表示第几个位置而不是数组的索引位置,也就是说i-1才是数组的索引位置。
代码实现
for(int i=location-1;i< s.length;i++)
{
temp = s.elem[i];
s.elem[i] = b;
b = temp;
}
s.elem[s.length] = b;
s.length++;
顺序表插入算法时间复杂度
最好情况下的时间复杂度
我们可以考虑,假如说我们将元素插入顺序表最后一个元素后面,元素需要移动几次呢?很明显,这种情况下,前面的元素并不需要移动。那么在这种情况下,时间复杂度就为O(1)。
最坏情况下的时间复杂度
当我们将新元素插入到第一个元素之前呢?很明显,这时候我们需要将所有元素向后移动。那么在这种情况下,时间复杂度为O(n)。
出题思路
考察顺序表的基本概念
B。本题可以使用基本公式,LOC(ai) = LOC(a1) + (i-1) * l,其中i代表第几个元素,l代表每个元素的长度,LOC(a1)为第一个元素的存储地址。
B。参考顺序表插入算法时间复杂度这部分的讲解,使用公式n/2计算即可。
A。首先顺序表底层使用数组实现,那么顺序表的有点主要就是存取方便。插入和删除时,因为要移动大量元素,所以效率很低,其实是顺序表的缺点。顺序表是一种存储结构,而不是逻辑结构。
C。线性表是具有n个相同特性数据元素的有限序列。
有关顺序表的使用场景
A。根据我们之前的分析,顺序表插入算法的时间复杂度是O(n),但是如果在最后一个元素后面插入新元素,时间复杂度为O(1),同时删除和插入分析思路类似,当删除最后一个元素时,时间复杂度为O(1),使用顺序表存取元素时间复杂度也是O(1)。
平均查找长度相关
假设有一个线性表为P=(1,2,3,4,5),我们根据P对平均查找长度进行分析。
首先我们假设查找每一个元素都是等概率的,因此pi = 1/n。而对于顺序表,我们查找第一个元素需要1次,查找第n个元素就需要n次。故Ci = i。
根据给出的公式,我们带入后可对平均查找长度进行计算。