接 numpy4.0学习 内容
****PART ONE
np.rint(x) --计算数组各元素的四舍五入值
np.modf(x) --返回各元素的整数值、小数值
np.cos(x) np.cosh(x) --计算数组各元素的普通型和双曲线型三角函数
np.exp(x) --计算各元素的指数值
np.sign(x) --计算数组各元素的符号值(-1,0,1)
****PART TWO
numpy的二元函数
+-*/** --两个数组各元素进行对应运算
np.maximum(x,y) 或 np.fmax(x,y) --计算各元素比较的最大值
np.minimum(x,y) 或 np.fmmin(x,y) --计算各元素比较的最小值
np.copysign(x,y) --将y数组各元素的符号赋给x数组对应元素
< > >= <= == != --数组对应元素相比较产生布尔型数组
****PART THREE
CSV 文件 ,逗号分隔值文件,用来存储批量数据
3.1. 将数据写入文件中
np.savetxt(frame,array,fmt='%.18e',delimiter=None)
#参数解释: frame --文件名称
array --数组数据
fmt --规定数据格式\类型
delimiter --规定分隔符号
#示例:a = np.arange(100),reshape((5,20))
np.savetxt('a.csv',a,fmt = '%d', delimiter = ',')
fmt = '%.1f'表示保留一位小数
3.2. 将文件数据读入到数组中
np.loadtxt(frame, dtype = np.float, delimiter = None , unpack = False)
unpack : 如果为True,读入属性将分别写入不同变量
3.3. CSV数据文件的局限性
只能存取一维、二维数组
****PART FOUR
任意维度数组如何存取
4.1. 写入文件
a.tofile(frame, sep = '',format = '%s')
4.2. 读入文件
a = np.fromfile(frame,dtype = float, count = -1, sep ='').reshape(shape)
注:当sep=''时, 数据以二进制方式写入
****PART FIVE
numpy的便捷文件存取,进行数据缓存
np.save(fname,array) 或 np.savez(fname,array)
fname --文件名,以.npy为扩展名,压缩扩展名为.npz
array --数组变量
np.load(fname)
fname --文件名,以.npy为扩展名,压缩扩展名为.npz
****PART SIX
numpy随机函数
numpy的随机数函数子库random
使用方法:np.random.rand()、np.random.randn()、np.randint()
shuffle(a) --对数组a的第0轴(最外层)进行随机排序
permutation(a) --和shuffle函数功能一致,但不改变数组a
choice(a[,size,replace = False ,p])
# a --数组;size --选出元素组成新数组的形状;replace --是否可以重用数组,默认是False; p:设定抽取概率
当不设置p时,默认等概率选取其中的值。p=b/np.sum(b)表示数值越大,被选取的概率越大,
uniform(low,high,size) 产生均匀分布的数组
low --起始值;high --结束值; size --形状
normal(loc,scale,size) 产生正态分布的数组
loc --均值;scale --标准差;size --形状
poisson(lam,size) 产生泊松分布
lam --随机事件发生率;size --形状
****PART SEVEN
numpy的统计函数
sum(a,axis=None) --给定轴的数组元素求和,axis=0 或 axis = 1等,=None 时计算所有元素的和
mean(a,axis=None)
average(a,axis = None, weights = None) --求加权平均
std(a,axis =None) --标准差
var(a,axis =None) --方差