Python3实现单级库存仿真,single echelon inventory assessment

参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py

src/simpy_3.0/simBackorder.py

这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。



"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across time

The system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facility

It is assumed that any unfulfilled order is backordered
and is fulfilled whenever the material is available in the
inventory.  The service level is estimated based on how
late the order was fulfilled

Demand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""

__author__ = 'Anshul Agarwal'


import simpy
import numpy as np

# Stocking facility class
class stockingFacility(object): ## ?? why we need to in herit 'object'?

    # initialize the new facility object
    def __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):
        self.env = env
        self.on_hand_inventory = initialInv
        self.inventory_position = initialInv
        self.ROP = ROP # inventory position
        self.ROQ = ROQ # fixed order quantity
        self.meanDemand = meanDemand
        self.demandStdDev = demandStdDev
        self.minLeadTime = minLeadTime
        self.maxLeadTime = maxLeadTime
        self.totalDemand = 0.0
        self.totalBackOrder = 0.0
        self.totalLateSales = 0.0
        self.serviceLevel = 0.0
        env.process(self.runOperation())

    # main subroutine for facility operation
    # it records all stocking metrics for the facility
    def runOperation(self):
        while True:
            yield self.env.timeout(1.0)
            # demand newly generated
            demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))
            self.totalDemand += demand
            # shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量
            shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to send
            self.on_hand_inventory -= shipment # send the shipment to some retailer
            self.inventory_position -= shipment
            backorder = demand - shipment # the amount of demand unmet temporarily
            self.totalBackOrder += backorder
            self.totalLateSales += max(0.0, backorder)
            # if the current inventory position is less than ROP, then place an order
            if self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issues
                self.env.process(self.ship(self.ROQ))
                # why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship'
                self.inventory_position += self.ROQ

    # subroutine for a new order placed by the facility
    def ship(self, orderQty):
        # recall that we assume the lead time follows an uniform distribution
        leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))
        yield self.env.timeout(leadTime)  # wait for the lead time before delivering
        # now 'orderQty' goods is received
        self.on_hand_inventory += orderQty


# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):
    env = simpy.Environment()  # initialize SimPy simulation instance
    np.random.seed(seedinit)
    s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)
    env.run(until=365)  # simulate for 1 year
    s.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比
    return s


######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ

# Simulate
replications = 100
sL = []
for i in range(replications):
    nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)
    sL.append(nodes.serviceLevel)

sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

src/simpy_3.0/simLostSales.py

不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,

  1. 在类stockingFacility中数据self.totalShipped用于记录从这个仓库发出了多少货;
  2. 在类stockingFacility的方法runOperation中,当前从该仓库的送出量shipment的计算方式不再考虑backorder;
  3. 在函数simulateNetwork中,计算服务水平(从该仓库的送出量占总需求量的比例)。


"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across time

The system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facility

It is assumed that any unfulfilled order is lost
The service level is estimated based on how much
of the demand was fulfilled

Demand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""

__author__ = 'Anshul Agarwal'


import simpy
import numpy as np

# Stocking facility class
class stockingFacility(object):

    # initialize the new facility object
    def __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):
        self.env = env
        self.on_hand_inventory = initialInv
        self.inventory_position = initialInv
        self.ROP = ROP
        self.ROQ = ROQ
        self.meanDemand = meanDemand
        self.demandStdDev = demandStdDev
        self.minLeadTime = minLeadTime
        self.maxLeadTime = maxLeadTime
        self.totalDemand = 0.0
        self.totalShipped = 0.0 # !!
        self.serviceLevel = 0.0
        env.process(self.runOperation())

    # main subroutine for facility operation
    # it records all stocking metrics for the facility
    def runOperation(self):
        while True:
            yield self.env.timeout(1.0)
            demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))
            self.totalDemand += demand
            shipment = min(demand, self.on_hand_inventory) # !!
            self.totalShipped += shipment
            self.on_hand_inventory -= shipment
            self.inventory_position -= shipment
            if self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issues
                self.env.process(self.ship(self.ROQ))
                self.inventory_position += self.ROQ

    # subroutine for a new order placed by the facility
    def ship(self, orderQty):
        leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))
        yield self.env.timeout(leadTime)  # wait for the lead time before delivering
        self.on_hand_inventory += orderQty


# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):
    env = simpy.Environment()  # initialize SimPy simulation instance
    np.random.seed(seedinit)
    s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)
    env.run(until=365)  # simulate for 1 year
    s.serviceLevel = s.totalShipped / s.totalDemand # !!
    return s


######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ

# Simulate
replications = 100
sL = []
for i in range(replications):
    nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)
    sL.append(nodes.serviceLevel)

sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值