蓝桥杯 2023年省赛真题
Java 大学C组
开胃小菜。
试题 A: 求和
本题总分: 5 5 5 分
【问题描述】
求 1 1 1 (含)至 20230408 20230408 20230408 (含)中每个数的和。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
204634714038436
自然数列求和, 1 + 2 + ⋯ + n = n ( n + 1 ) 2 1+2+\cdots+n=\cfrac {n(n+1)}2 1+2+⋯+n=2n(n+1)。
public class Main {
public static void main(String ...args) {
new Main().run(); }
void run() {
System.out.println(
20230408 * (20230408 + 1l) / 2
);
}
}
或者迭代答案。
public class Main {
public static void main(String ...args) {
new Main().run(); }
void run() {
long ans = 0;
for (int i = 1; i <= 20230408; ++i)
ans += i;
System.out.println(ans);
}
}
试题 B: 分糖果
本题总分: 5 5 5 分
【问题描述】
两种糖果分别有 9 9 9 个和 16 16 16 个,要全部分给 7 7 7 个小朋友,每个小朋友得到的糖果总数最少为 2 2 2 个最多为 5 5 5 个,问有多少种不同的分法。
只要有其中一个小朋友在两种方案中分到的糖果不完全相同,这两种方案就算作不同的方案。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
5067671
观察到两种糖果组成二至五个的方案为 3 + 4 + 5 + 6 = 18 3+4+5+6=18 3+4+5+6=18 种,以该方案为蓝本枚举 7 7 7 个小朋友构成的总分配方案一共有 1 8 7 18^7 187 种,时间复杂度显然不理想,于是考虑枝剪。
一个可以观察到的上界是 C 15 6 C 22 6 ≈ 3.7 e 8 C_{15}^6C_{22}^6\approx 3.7e8 C156C226≈3.7e8,因为一个自然数 n n n 被拆分成 k k k 个非负整数根据插板法共有 C n + k − 1 k − 1 C_{n +k - 1}^{k-1} Cn+k−1k−1 种方案。
public class Main {
public static void main(String ...args) {
new Main().run(); }
int n = 7, c1 = 9, c2 = 16, l = 2, r = 5;
long ans = 0;
void dfs(int depth) {
if (depth == n) {
if (c1 == 0 && c2 == 0) ++ans;
} else {
for (int i = l; i <= r; ++i)
for (int k = 0, g = i; k <= i; ++k, --g) {
if (c1 < k || c2 < g) continue;
c1 -= k;
c2 -= g;
dfs(depth + 1);
c1 += k;
c2 += g;
}
}
}
void run() {
dfs(0);
System.out.println(ans);
}
}
试题 C: 三国游
时间限制: 3.0 s 3.0\mathrm s 3.0s 内存限制: 512.0 M B 512.0\mathrm{MB} 512.0MB 本题总分: 10 10 10 分
【问题描述】
小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵 X , Y , Z X, Y, Z X,Y,Z (一开始可以认为都为 0 0 0 )。游戏有 n n n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i i i 个事件发生时会分别让 X , Y , Z X, Y, Z X,Y,Z 增加 A i , B i , C i A_i, B_i,C_i Ai,Bi,Ci。
当游戏结束时 (所有事件的发生与否已经确定),如果 X , Y , Z X, Y, Z X,Y,Z 的其中一个大于另外两个之和,我们认为其获胜。例如,当 X > Y + Z X > Y + Z X>Y+Z 时,我们认为魏国获胜。小蓝想知道游戏结束时如果有其中一个国家获胜,最多发生了多少个事件?
如果不存在任何能让某国获胜的情况,请输出 − 1 −1 −1。
【输入格式】
输入的第一行包含一个整数 n n n。
第二行包含 n n n 个整数表示 A i A_i Ai,相邻整数之间使用一个空格分隔。
第三行包含 n n n 个整数表示 B i B_i Bi,相邻整数之间使用一个空格分隔。
第四行包含 n n n 个整数表示 C i C_i Ci,相邻整数之间使用一个空格分隔。
【输出格式】
输出一行包含一个整数表示答案。
【样例输入】
3
1 2 2
2 3 2
1 0 7
【样例输出】
2
【样例说明】
发生两个事件时,有两种不同的情况会出现获胜方。
发生 1 , 2 1, 2 1,2 事件时蜀国获胜。
发生 1 , 3 1, 3 1,3 事件时吴国获胜。
【评测用例规模与约定】
对于 40 % 40\% 40% 的评测用例, n ≤ 500 n ≤ 500 n≤500;
对于 70 % 70\% 70% 的评测用例, n ≤ 5000 n ≤ 5000 n≤5000;
对于所有评测用例, 1 ≤ n ≤ 1 0 5 , 1 ≤ A i , B i , C i ≤ 1 0 9 1 ≤ n ≤ 10^5,1 ≤ A_i, B_i,C_i ≤ 10^9 1≤n≤105,1≤Ai,Bi,Ci≤109。
贪心
同时考虑三个国家是相当困难的,于是考虑分别求出魏蜀吴分别获胜的话最大事件数,最优答案就是这若干个数中的最大值。
以魏举例,记第 i i i 个事件对魏获胜的贡献为 x i − y i − z i x_i -y_i -z_i xi−yi−zi,按贡献降序重排事件,找到一个 k k k,满足 ∑ i = 1 k x i > ∑ i = 1 k ( y i + z i ) \sum_{i=1}^kx_i >\sum_{i=1}^k(y_i + z_i) ∑i=1kxi>∑i=1k(yi+zi) 且 k k k 尽可能大,若 k < n k < n k<n,易知 ∑ i = 1 k + 1 x i ≤ ∑ i = 1 k + 1 ( y i + z i ) \sum_{i=1}^{k+1}x_i \leq\sum_{i=1}^{k+1}(y_i + z_i) ∑i=1k+1xi≤∑i=1k+1(yi+zi) 且 [ 1 , k ] [1,k] [1,k] 间的或 ( k , n ] (k,n] (k,n] 间的事件交换不会对和式值造成影响, [ 1 , k ] [1,k] [1,k] 间与 ( k , n ] (k,n] (k,n] 间的元素交换会使 ∑ i = 1 k + 1 ( x i − y i − z i ) \sum_{i=1}^{k+1}(x_i-y_i - z_i) ∑i=1k+1(x