题目来源:牛客网
链接:https://ac.nowcoder.com/acm/contest/892/B
题目类型:DP
题目样例:
3 2 2
1 1
1 1
2 0.5
输出样例
0.500
解析:
首先考虑概率DP,数组dp[ i ] [ j ],表示i个发动机中有j台救援成功的概率。
递推关系:
①
d
p
[
i
]
[
0
]
=
d
p
[
i
−
1
]
∗
(
1
−
p
i
)
dp[i][0]=dp[i-1]*(1-pi)
dp[i][0]=dp[i−1]∗(1−pi)
②
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
]
∗
(
1
−
a
[
i
]
)
+
d
p
[
i
−
1
]
[
j
−
1
]
∗
a
[
i
]
dp[i][j]=dp[i-1][j]*(1-a[i])+dp[i-1][j-1]*a[i]
dp[i][j]=dp[i−1][j]∗(1−a[i])+dp[i−1][j−1]∗a[i]
其中:
①是无论多少台发动机,都为失败的概率
②表示成功救援 j 台发动机,第i台失败和第 j 台成功发动机是第 i 台发动机
上代码:
#include<iostream>
#include<cstring>
using namespace std;
int main(){
double a[2010],dp[2010][2001];
fill(a,a+2010,1);
int n,m,k;
cin >> n >> m >> k;
while(n--){
int i;
double p;
scanf("%d%lf",&i,&p);
a[i]=a[i]*(1-p);//评论的大佬提醒了一下,失败的方法只有一种,而成功有很多种,所以存失败的概率
}
for(int i=1;i<=m;i++){
a[i]=1-a[i];//这里变成成功的概率
}
dp[1][0]=1-a[1];//初始化
dp[1][1]=a[1];
for(int i=2;i<=m;i++){
dp[i][0]=dp[i-1][0]*(1-a[i]);// ①
for(int j=1;j<=i;j++){
dp[i][j]=dp[i-1][j]*(1-a[i])+dp[i-1][j-1]*a[i]; // ②
}
}
double ans=0;
for(int i=k;i<=m;i++)
ans+=dp[m][i];//累加成功概率
printf("%.3lf",ans);
return 0;
}