题目链接:http://acm.hdu.edu.cn/diy/contest_show.php?cid=31478;
这次其实打的不是很好,两个小时A了七道题,但是第五题wa了42次,三个小时死磕,个人觉得并没有任何问题,但是还是不知道为什么错哎。想法应该是一样的,可能是细节问题吧。看了好久。感觉弱好弱,西交大佬都AK了。。。膜一发金牌爷。
第一个要补的题就是 CF 740 A。之所以要说这个是因为当时校赛就没做出来,然后这次也没做出来。弱还是太弱。
主要思路:
分析:n对4取余,可分为4种情况:(t = n % 4)(每个情况下考虑a,b,c的所有组合)
1、t == 0,则不必花钱买书。
2、t == 3,还需买1本,
(1)完全用a元买---------用a元买1本
(2)完全用c元买---------用3c元买9本(因为a可能很大,然后c很小)
(3)可以用b + c买-------用b + c元共买5本
(4)肯定不能完全用b元买,(因为b元买2本,无论怎么买,总数都不会被4整除)
(5)此外肯定不能用a + b, a + c,a + b + c买,因为a元买1本即可达到目的,用a + b,a + c,a + b + c花的钱显然比a多,而且没必要买那么多
3、t == 2,还需买2本,
(1)完全用a买-----------用2a元买2本
(2)完全用b买-----------用b元买2本
(3)完全用c买-----------用2c元买6本
(4)同理,没必要用a + b,b + c, a + b + c买,因为b元买2本即可达到目的。也没必要用a + c买,因为a + c买的是4本,不管怎么买,总数都不会被4整除
4、t == 1,还需买3本,
(1)完全用a买-----------用3a元买3本
(2)完全用c买-----------用c元买3本
(3)用a + b买-----------用a + b买共买3本
(3)肯定不能完全用b元买,因为无论怎么买,总数都不会被4整除
(4)同理,没必要用a + c,b + c, a + b + c买,因为c元买3本即可达到目的。
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
long long n,a,b,c;
while(scanf("%I64d %I64d %I64d %I64d", &n, &a, &b, &c) != EOF)
{
long long ans;
long long s = 4 - n%4;
if(s == 4) {
ans = 0;
} else if(s == 3) {
ans = min(a+b, min(3*a, c));
} else if(s == 2) {
ans = min(min(2*a, b), 2*c);
} else if(s == 1) {
ans = min(min(a, 3*c), b+c);
}
printf("%I64d\n", ans);
}
return 0;
}
第二题 是正式赛 E题;
怎么说呢个人感觉不难,但是就是一直错,这里我把1当做up,0为down。
将当前的子串拆成前一半和后一半,如果所找的元素在后一个半串中就递归到上一个串中。否则就将flag取反然后递归上一个串。直接到第一个串就可以了。这里我也不知道我的错了,就贴上标程吧。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <list>
#include <cstdio>
#define rep(i,a,b) for(int (i) = (a);(i) <= (b);++ (i))
#define per(i,a,b) for(int (i) = (a);(i) >= (b);-- (i))
#define mem(a,b) memset((a),(b),sizeof((a)))
#define FIN freopen("in.txt","r",stdin)
#define FOUT freopen("out.txt","w",stdout)
#define IO ios_base::sync_with_stdio(0),cin.tie(0)
#define N 105
#define INF 0x3f3f3f3f
#define INFF 0x3f3f3f3f3f3f3f
typedef long long ll;
const ll mod = 1e8+7;
const ll eps = 1e-12;
using namespace std;
int n;
ll p,dp[55];
void fuc(){
dp[0] = 1;
rep(i, 1, 51){
dp[i] = dp[i-1]*2;
}
}
int dfs(int n, ll p){
if(n == 0) return 1;
if(p < dp[n-1]) return !dfs(n-1, p);
else
return dfs(n-1, p-dp[n-1]);
}
int main()
{
//FIN;
//FOUT;
fuc();
while(cin >> n >> p){
cout << (dfs(n, p) == 1 ? "up" : "down") << endl;
}
return 0;
}
第三道题,就是也是一个找规律题吧,但是当时一直磕上一道题,这道题就没有太想。
I: 根据打表可以发现 1e6 以内的数最多迭代 12 次就可以结束。那么我们可以将所有次数 12 以内的数字打表求出来。 然后在这个表里面二分求解答案即可。 注意打表的技巧。 1、筛素数的时候可以把每个数的 f[i] 求得,用素数网的时候就顺便把素数加起来。
sum[j] += i;。 2、从小到大遍历数字 2-1e6 的时候,可以求得 g[i] 。 i 为素数时 g[i]=1,否则 g[i]=g[f[i]]; (因为 f[i] <= i,且是从小到大遍历的,所有比 i 小的 g[i] 都已经求得,递推的思想)。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <list>
#include <cstdio>
#define rep(i,a,b) for(int (i) = (a);(i) <= (b);++ (i))
#define per(i,a,b) for(int (i) = (a);(i) >= (b);-- (i))
#define mem(a,b) memset((a),(b),sizeof((a)))
#define FIN freopen("in.txt","r",stdin)
#define FOUT freopen("out.txt","w",stdout)
#define IO ios_base::sync_with_stdio(0),cin.tie(0)
#define mid ((l+r)>>1)
#define ls (id<<1)
#define rs ((id<<1)|1)
#define N 1000000+5
#define INF 0x3f3f3f3f
#define INFF 0x3f3f3f3f3f3f3f
typedef long long ll;
const ll mod = 1e8+7;
const ll eps = 1e-12;
using namespace std;
int T,a,b,k,sum[N],g[N];
bool isPrime[N];
vector <int> ans[20];
void fuc(){
mem(isPrime, true);
rep(i, 2, N-1){
if(isPrime[i]){
for(int j = i+i;j <= N-1;j += i){
isPrime[j] = false;
sum[j] += i;
}
}
}
rep(i, 2, N-1){
if(isPrime[i]) g[i] = 1;
else
g[i] = g[sum[i]]+1;
ans[g[i]].push_back(i);
}
}
int main()
{IO;
//FIN;
//FOUT;
fuc();
while(cin >> a >> b >> k){
if(k >= 13){
cout << "0" << endl;
continue;
}
int l = lower_bound(ans[k].begin(), ans[k].end(), a)-ans[k].begin();
int r = upper_bound(ans[k].begin(), ans[k].end(), b)-ans[k].begin();
cout << r-l << endl;
}
return 0;
}
J题是一个状态压缩,弱还是不太懂。先留着以后慢慢来吧。链接:http://paste.ubuntu.com/24114953/
K题是压轴题。弱直接弃。。