Java P1031 均分纸牌

题目描述
有N堆纸牌,编号分别为 1,2,…,N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N的堆上取的纸牌,只能移到编号为N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如N=4,4堆纸牌数分别为:

①9②8③17④6

移动3次可达到目的:

从 ③ 取4张牌放到 ④ (9,8,13,10)-> 从 ③ 取3张牌放到 ②(9,11,10,10)-> 从 ② 取1张牌放到①(10,10,10,10)。

输入格式
两行

第一行为:N(N 堆纸牌,1≤N≤100)

第二行为:A_1,A_2, … ,A_nA (N堆纸牌,每堆纸牌初始数,1≤Ai≤10000)

输出格式
一行:即所有堆均达到相等时的最少移动次数。

输入输出样例

4
9 8 17 6

输出

3

import java.util.*;

public class Main {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int[] a = new int[105];
		int n  = in.nextInt();
		int s = 0;
		for (int i = 0; i < n; i++) {
			a[i] = in.nextInt();
			s+=a[i];
		}
		s/=n;
		int t = 0;
		for (int i = 0; i < n; i++) {
			if (a[i] != s) {
				a[i+1] = a[i] + a[i+1] - s;
				t++;
			}
		}
		System.out.println(t);

	}
}

这题我第一次接触,感觉很有技巧,还是记录下万一以后用到。
重点讲下思路,,,,
最后每一堆的数量肯定是一样多的,也一定能一样多,然后得求个平均值,
然后,看每一堆的数量与平均值相比的情况。如果等于平均值就不需要移动。比平均值多或少都需要移动。SO,最多的情况也就是每个都移动下,但是这个题要求最优的,第一堆只能给或拿从第二堆,万一把第二堆的都拿过来都不够第一堆怎么办,我看到有的同学对这个问题有疑惑,其实完全不用管这个,因为最后只要最优的次数,比如样例, 9 、8、17、6;3次容易分析出来,比如 1、3、20、16 也是三次,当一个人来移动的时候,就会先把 16 拿出 6 个放到20中,然后从20中拿出16个到3中,然后在从3中拿出9个放到1中。而我们做的时候并不是这样模拟,这样太繁琐,这样想,如果这一堆,只要不等于平均数,就得做移动,无论是 给与 还是得到,次数都是 1,并不用管是 谁移动,代码写的话就是倒着推的,如果这一堆不够后面一堆肯定够。

发布了26 篇原创文章 · 获赞 19 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览