leetcode 785 判断二分图

给定一个无向图graph,当这个图为二分图时返回true。

如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。

graph将会以邻接表方式给出,graph[i]表示图中与节点i相连的所有节点。每个节点都是一个在0到graph.length-1之间的整数。这图中没有自环和平行边: graph[i] 中不存在i,并且graph[i]中没有重复的值。

示例 1:
输入: [[1,3], [0,2], [1,3], [0,2]]
输出: true
解释:
无向图如下:
0----1
| |
| |
3----2
我们可以将节点分成两组: {0, 2} 和 {1, 3}。

示例 2:
输入: [[1,2,3], [0,2], [0,1,3], [0,2]]
输出: false
解释:
无向图如下:
0----1
| \ |
| \ |
3----2
我们不能将节点分割成两个独立的子集。

思路:对于图中的任意两个节点 uu 和 vv,如果它们之间有一条边直接相连,那么 uu 和 vv 必须属于不同的集合

class Solution {
//二分图
    //可能存在非联通图情况
    public boolean isBipartite(int[][] graph) {
        if(graph.length==0) return true;
        int[][] array=new int[graph.length][graph.length];
        int[] visited=new int[graph.length];
        for(int i=0;i<graph.length;i++){//邻接表
            for(int j=0;j<graph[i].length;j++){
                array[i][graph[i][j]]=1;
                array[graph[i][j]][i]=1;
            }
        }
        

        for(int i=0;i<graph.length;i++){
            for(int j=0;j<graph.length;j++){
                if(array[i][j]==1 && visited[j]==0){//这里为啥是j?
                //每一个连通子图,只执行一次,目的是找到一个入口,并把入口初始化
                    visited[i]=-1;
                    dfs(array,visited,j,i);
                }
            }
        }

        for(int i=0;i<graph.length;i++){
            for(int j=0;j<graph.length;j++){
                if(array[i][j]==1){
                    if(visited[i]==visited[j]){
                        return false;
                    }
                }
            }
        }
        return true;

    }
    //k表示当前
    public void dfs(int[][] array,int[] visited,int k,int old){
        visited[k] = visited[old]==1?-1:1;
        for(int i=0;i<array.length;i++){
            if(array[k][i]==1 && visited[i]==0){
                  dfs(array,visited,i,k);
            }
        }
    }
}
class Solution {
    public boolean isBipartite(int[][] graph) {
        int N = graph.length;
        int[] status = new int[N]; // 0 - 1  1 
        for(int i = 0; i < N; i++){
            if(status[i] == 0){
                 if(!dfs(i, status, graph, -1)){
                     return false;
                 }
                
            }
        }
        return true;
    }

    
    public boolean dfs(int index, int[] status, int[][] graph, int preStatus){
        if(status[index] != 0){
            return status[index] == -1 * preStatus;
        }
        status[index] = -1 * preStatus;
        for(int next : graph[index]){
            if(!dfs(next, status, graph, status[index])){
                return false;
            }
        }
        return true;
    }
}

并查集

class Solution {
    public boolean isBipartite(int[][] graph) {
        // 初始化并查集
        UnionFind uf = new UnionFind(graph.length);
        // 遍历每个顶点,将当前顶点的所有邻接点进行合并
        for (int i = 0; i < graph.length; i++) {
            int[] adjs = graph[i];
            for (int w: adjs) {
                // 若某个邻接点与当前顶点已经在一个集合中了,说明不是二分图,返回 false。
                if (uf.isConnected(i, w)) {
                    return false;
                }
                uf.union(adjs[0], w);
            }
        }
        return true;
    }
}

// 并查集
class UnionFind {
    int[] roots;
    public UnionFind(int n) {
        roots = new int[n]; 
        for (int i = 0; i < n; i++) {
            roots[i] = i;
        }
    }

    public int find(int i) {
        if (roots[i] == i) {
            return i;
        }
        return roots[i] = find(roots[i]);
    }

    // 判断 p 和 q 是否在同一个集合中
    public boolean isConnected(int p, int q) {
        return find(q) == find(p);
    }

    // 合并 p 和 q 到一个集合中
    public void union(int p, int q) {
        roots[find(p)] = find(q);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值