HDU-4085 Peach Blossom Spring(斯坦纳森林)

题意:HDU-4085

n n n个点,需要你通过边来连接前 k k k个点和后 k k k个点,求最小总边权。

分析:

这题比较坑的是最后你得出来的图可以是不连通的(每个点对一一对应也是满足题意的)…也就是说你可以这样, 1 1 1点只与 n n n(与 n − 1 n-1 n1也可以)点连接, 2 2 2点只与 n − 1 n-1 n1点连接等等。你也可以将所有 2 k 2k 2k点通过边连通起来,但是答案不一定最优。所以我们先跑一遍斯坦纳树,然后求一遍合法子树的最小值,最后再 d p dp dp合并斯坦纳子树寻找最优解。

p s : ps: ps:一开始以为这 2 k 2k 2k个点都要连通, w a wa wa n n n次, q a q qaq qaq

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

#define pii pair<int, int>
#define ppi pair<pii, int>
#define mp make_pair
#define fi first
#define se second

const int maxn = 50 + 5;
const int maxm = (1 << 10) + 5;
const int inf  = 0x3f3f3f3f;

int n, m, k, u, v, w, cnt, ans, maxsta;
int head[maxn], dp[maxn][maxm], DP[maxm];
bool vis[maxn];
queue<int> q;

struct node{
	int to, val, next;
}edge[maxm << 1];

void addedge(int u, int v, int w){
	edge[cnt].to = v;
	edge[cnt].val = w;
	edge[cnt].next = head[u];
	head[u] = cnt++;
}

void spfa(int sta){
	while(!q.empty()){
		int u = q.front();
		q.pop();
		vis[u] = 0;
		for(int i = head[u]; ~i; i = edge[i].next){
			int to = edge[i].to, val = edge[i].val;
			if(dp[to][sta] > dp[u][sta] + val){
				dp[to][sta] = dp[u][sta] + val;
				if(!vis[to]) q.push(to), vis[to] = 1;
			}
		}
	}
}

bool check(int sta){//判断这个状态是不是一一对应
	int ans = 0;
	for(int i = 0; i < 2 * k; i++){
		if(i < k) (1 << i) & sta ? ans++ : 0;
		else (1 << i) & sta ? ans-- : 0;
	}
	return !ans;
}

int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	int T;
	cin >> T;
	while(T--){
		cin >> n >> m >> k;
		memset(head, -1, sizeof head), cnt = 0;
		for(int i = 1; i <= m; i++){
			cin >> u >> v >> w;
			addedge(u, v, w);
			addedge(v, u, w);
		}
		memset(dp, inf, sizeof dp);
		for(int i = 1; i <= k; i++) dp[i][1 << (i - 1)] = 0;
		for(int i = n - k + 1, j = k + 1; i <= n; i++, j++) dp[i][1 << (j - 1)] = 0;
		maxsta = 1 << (2 * k);
		for(int sta = 0; sta < maxsta; sta++){
			while(!q.empty()) q.pop();
			for(int i = 1; i <= n; i++){
				for(int s = sta; s; s = (s - 1) & sta){
					if(dp[i][sta] > dp[i][s] + dp[i][s ^ sta]){
						dp[i][sta] = dp[i][s] + dp[i][s ^ sta];
					}
				}
				if(dp[i][sta] < inf) q.push(i), vis[i] = 1;
			}
			spfa(sta);
		}
		memset(DP, inf, sizeof DP);
		for(int s = 0; s < maxsta; s++){
			if(!check(s)) continue;
			for(int i = 1; i <= n; i++)
				DP[s] = min(DP[s], dp[i][s]);
		}
		for(int s = 0; s < maxsta; s++){
			if(!check(s)) continue;
			for(int p = (s - 1) & s; p; p = (p - 1) & (s))
				DP[s] = min(DP[s], DP[p] + DP[s ^ p]);
		}
		if(DP[maxsta - 1] == inf) cout << "No solution" << '\n';
		else cout << DP[maxsta - 1] << '\n';
	}
    return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值