随机森林
逆光mlz
这个作者很懒,什么都没留下…
展开
-
决策树与随机森林超详细笔记 原理与方法
一、决策树1、决策树 1.决策树是一种树形结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 2.决策树的学习是以实例为基础的归纳学习 3.决策树学习采用的是自顶向下的递归方法,其基本方法是以信息熵为度量构造亦可熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶节点的实例都属于同一类。2、决策树学习算法的特点 1.决策树学习算法的...原创 2018-12-02 17:28:36 · 3162 阅读 · 6 评论 -
XGBoost及随机森林处理kaggle—Titanic数据实战
一、什么是XGBoostXGBoost是使用梯度提升框架GBDT实现的高效、灵活、可移植的机器学习库,是GBDT的一个C++实现。它将树的生成并行完成,从而提高学习速度。一般来说,XGBoost的速度和性能都要优于skearn.ensamble.GradientBoostingClassifier类。官网为https://xgboost.readthedocs.io/en/latest/二、...原创 2018-12-04 19:37:01 · 1908 阅读 · 1 评论 -
决策树对鸢尾花数据的处理实践
学习了决策树和随机森林的相关理论知识,让我们来动手实践吧~ 还是从熟悉的鸢尾花数据入手首先导入相关包和进行数据预处理,预处理方法可以见https://blog.csdn.net/qq_43468729/article/details/84678701这里就不重复写了。接着建立pipline模型model = Pipeline([ ('ss', StandardScaler()),...原创 2018-12-02 20:15:19 · 2131 阅读 · 0 评论 -
随机森林处理鸢尾花数据实践
下面介绍随机森林处理鸢尾花数据的python实践,不清楚随机森林原理的科研参考我的笔记https://blog.csdn.net/qq_43468729/article/details/84722248开始撸代码~~首先导入相关包并进行数据预处理import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mp...原创 2018-12-02 20:24:30 · 3983 阅读 · 0 评论