自动驾驶轨迹预测--基础知识篇

自动驾驶预测轨迹作用

轨迹预测一般位于感知模块的后端,规控的前端。自动驾驶系统需要对周围环境信息有一定认知能力,最基本的水平是要识别环境,再上一层则需要理解环境,而再上一层则需要对环境进行预测。在对目标进行预测后,规控便可根据预测信息进行自车的路径规划,并做出决策对可能出现的危险情况进行制动或发出告警,这便是轨迹预测模块存在的意义。模块的输入为感知模块提供的目标track的state信息、道路结构信息,综合考量高精地图信息、目标之间的交互信息,环境的语义信息及目标的意图信息,输出为未来一段时间的轨迹预测(0-5s的时间长度)
在这里插入图片描述

在百度 Apollo 行为轨迹预测分为车辆轨迹预测和行人轨迹预测两大类。在车辆轨迹预测中,分为意图预测和速度预测两个过程。意图预测根据不同的场景,通过深度学习神经网络给出各行为意图的概率。如图所示,

在这里插入图片描述

处理步骤:
[1] 运动状态编码: 使用一个Encoder(如LSTM)对障碍车的运动历史进行处理,得到障碍车的编码。
[2] 车道线编码: 使用另一套Encoder(可以是LSTM或一维CNN)对车道线进行编码,得到每条车道的编码。
[3] 全局池化: 将每条车道的编码通过一个MLP(多层感知器)进行处理,然后进行全局池化操作,得到对整体大环境的理解——Environment Encoding。
[4] 意图预测: 将障碍物本身的编码、每条车道的编码以及环境编码拼接到一起,然后进行Softmax操作,预测障碍车将来选择每条车道的概率。
输出: 选择每条车道的概率。

相关轨迹预测论文解读
论文一

VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation

VectorNet 是一个分层图神经网络(Hierarchical Graph Neural Network),它直接从向量化表示中编码高清晰度(HD)地图和代理(如车辆和行人)的动态。这种方法与传统的基于图像渲染的方法不同,后者通常使用卷积神经网络(ConvNets)处理渲染后的图像,该论文创新点

  • 向量化表示:VectorNet 直接使用向量表示道路组件和代理动态,避免了渲染过程中的信息损失。
  • 分层图网络:通过局部图网络处理单个多线段内的向量,然后通过全局图网络模拟所有组件之间的高阶交互。
  • 辅助任务:提出了一个新颖的辅助任务,即从上下文中恢复被随机遮蔽的地图实体和代理轨迹,以增强模型对上下文特征的学习。

通过图神经网络直接处理向量化的道路和代理信息,从而提高了行为预测的准确性和效率
模型的输入:

  • 高清晰度地图:
    这些地图提供了详细的道路信息,如车道线、交叉口、人行横道、停车标志等。
    地图特征被向量化,表示为一系列具有地理坐标的向量。
  • 代理轨迹:
    代理轨迹指的是移动代理(如车辆、行人等)的历史运动轨迹。
    这些轨迹也被向量化,表示为一系列时间序列中的控制点。
  • 代理特征:
    包括代理的类型(如车辆、行人)、速度、加速度等动态信息。
    这些特征被编码为节点特征,用于图神经网络中的节点。
  • 场景上下文:
    包括交通信号灯的状态、道路标志等与交通场景相关的信息。
    这些信息有助于理解代理可能的行为模式。
  • 局部图特征:
    通过局部图网络(Local Graph Network)处理,聚合同一多线段(如车道)内的向量节点特征。
    全局图特征(Global Graph Features):
  • 通过全局图网络:
    处理,模拟不同多线段之间的高阶交互。
    这通常涉及自注意力机制,以捕捉更广泛的上下文信息。
    辅助任务输入(Auxiliary Task Inputs):

处理过程

  • 向量化表示
    将高清晰度(HD)地图中的地理特征(如车道线、交叉口、人行横道等)和代理(如车辆、行人)的动态信息转换为向量序列。
    例如,车道边界可以通过多个控制点定义的样条曲线来近似,而一个停止标志可以由一个单独的点表示。
  • 节点特征定义
    每个向量被视为图中的一个节点,节点特征包括:
    起始点和终止点的坐标(可以是2D或3D)。
    属性特征,如对象类型、时间戳(对于轨迹)、道路特征类型或速度限制(对于车道)。
    多线段组ID和语义标签。
  • 局部图构建
    构建子图,将属于同一多线段的向量节点连接起来,形成局部图。
    使用多层感知器(MLPs)来转换和聚合局部图中的节点特征。
  • 全局图构建
    将所有多线段节点连接起来,形成一个全局图,以便模拟不同轨迹和地图特征之间的高阶交互。
    通常使用自注意力机制来实现全局图的构建。
  • 坐标归一化
    为了使输入节点特征与目标代理的位置无关,将所有向量的坐标归一化,使其以目标代理在最后观测时间步的位置为中心。
  • 辅助任务输入处理
    在训练过程中,随机遮蔽输入节点特征,要求模型预测这些被遮蔽的特征。
    这有助于鼓励模型更好地捕捉节点之间的交互。
  • 时间步长采样
    对于代理轨迹,从历史轨迹中以固定的时间间隔(如每0.1秒)采样关键点,并将这些点连接成向量。
  • 特征编码
    对于HD地图特征和代理轨迹,使用图神经网络(GNNs)来编码这些向量集合,形成可以用于预测的特征表示。
    计算预测轨迹和实际轨迹之间的误差,通常使用均方误差(MSE)或平均位移误差(ADE)等指标。计算辅助任务的损失,如节点特征的预测误差。通过这些处理步骤,VectorNet 能够将复杂的道路和代理动态信息有效地编码为图结构,进而用于行为预测任务。这些步骤确保了模型能够捕捉到必要的空间和语义信息,从而提高预测的准确性
  • 9
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值