自动驾驶预测轨迹作用
轨迹预测一般位于感知模块的后端,规控的前端。自动驾驶系统需要对周围环境信息有一定认知能力,最基本的水平是要识别环境,再上一层则需要理解环境,而再上一层则需要对环境进行预测。在对目标进行预测后,规控便可根据预测信息进行自车的路径规划,并做出决策对可能出现的危险情况进行制动或发出告警,这便是轨迹预测模块存在的意义。模块的输入为感知模块提供的目标track的state信息、道路结构信息,综合考量高精地图信息、目标之间的交互信息,环境的语义信息及目标的意图信息,输出为未来一段时间的轨迹预测(0-5s的时间长度)
在百度 Apollo 行为轨迹预测分为车辆轨迹预测和行人轨迹预测两大类。在车辆轨迹预测中,分为意图预测和速度预测两个过程。意图预测根据不同的场景,通过深度学习神经网络给出各行为意图的概率。如图所示,
处理步骤:
[1] 运动状态编码: 使用一个Encoder(如LSTM)对障碍车的运动历史进行处理,得到障碍车的编码。
[2] 车道线编码: 使用另一套Encoder(可以是LSTM或一维CNN)对车道线进行编码,得到每条车道的编码。