我们先来看一道题目:
有一个n x m大小的迷宫。其中字符’S’表示起点,字符’D’表示出口,字符’x’表示墙壁,字符,. '表示平地。你需要从’S’出发走到’D’,每次只能向上下左右相邻的位置移动,并且不能走出地图,也不能走进墙壁。
每次移动消耗1时间,走过路都会塌陷,因此不能走回头路或者原地不动。现在已知出口的大门会在T时间打开,判断在0时间从起点出发能否逃离迷宫。
如上图所示,将n X m的网格染成黑白两色。我们记每个格子的行数和列数之和为x,如果x为偶数,那么格子就是白色,反之奇数时为黑色。容易发现相邻的两个格子的颜色肯定不一样,也就是说每走一步颜色都会不一样。更普遍的结论是:走奇数步会改变颜色,走偶数步颜色不变。
那么如果起点和终点的颜色一样,而T是奇数的话,就不可能逃离迷宫。同理,如果起点和终点的颜色不一样,而T是偶数的话,也不能逃离迷宫。遇到这两种情况时,就不用进行DFS了,直接输出"NO"。
这样的剪枝就是奇偶性剪枝,本质上也属于可行性剪枝。
实现代码:
#include <iostream>
using namespace std;
const int N = 10;
int n, m, T;
char mat[N][N];
bool vis[N][N];
int dx[4] = {0, 0, -1, 1};
int dy[4] = {1, -1, 0, 0};
bool ok;
void dfs(int x, int y, int t)
{
if (ok)
{
return;
}
if (t == T)
{
if (mat[x][y] == 'D')
{
ok = true;
}
return;
}
vis[x][y] = true;
for (int i = 0; i < 4; i++)
{
int tx = x + dx[i];
int ty = y + dy[i];
if (tx < 0 || tx >= n || ty < 0 || ty >= m || mat[tx][ty] == 'X' || vis[tx][ty])
{
continue;
}
dfs(tx, ty, t + 1);
}
vis[x][y] = false;
}
int main()
{
cin >> n >> m >> T;
for (int i = 0; i < n; ++i)
{
cin >> mat[i];
}
int sx, sy, ex, ey;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
if (mat[i][j] == 'S')
sx = i, sy = j;
if (mat[i][j] == 'D')
ex = i, ey = j;
}
}
if ((sx + sy + ex + ey + T) % 2 != 0)
{
cout << "NO" << endl;
}
else
{
ok = false;
dfs(sx, sy, 0);
if (ok)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
return 0;
}