奇偶性剪枝

我们先来看一道题目:

有一个n x m大小的迷宫。其中字符’S’表示起点,字符’D’表示出口,字符’x’表示墙壁,字符,. '表示平地。你需要从’S’出发走到’D’,每次只能向上下左右相邻的位置移动,并且不能走出地图,也不能走进墙壁。

每次移动消耗1时间,走过路都会塌陷,因此不能走回头路或者原地不动。现在已知出口的大门会在T时间打开,判断在0时间从起点出发能否逃离迷宫。

在这里插入图片描述
如上图所示,将n X m的网格染成黑白两色。我们记每个格子的行数和列数之和为x,如果x为偶数,那么格子就是白色,反之奇数时为黑色。容易发现相邻的两个格子的颜色肯定不一样,也就是说每走一步颜色都会不一样。更普遍的结论是:走奇数步会改变颜色,走偶数步颜色不变。

那么如果起点和终点的颜色一样,而T是奇数的话,就不可能逃离迷宫。同理,如果起点和终点的颜色不一样,而T是偶数的话,也不能逃离迷宫。遇到这两种情况时,就不用进行DFS了,直接输出"NO"。

这样的剪枝就是奇偶性剪枝,本质上也属于可行性剪枝。

实现代码:

#include <iostream>
using namespace std;
const int N = 10;
int n, m, T;
char mat[N][N];
bool vis[N][N];
int dx[4] = {0, 0, -1, 1};
int dy[4] = {1, -1, 0, 0};
bool ok;
void dfs(int x, int y, int t)
{
    if (ok)
    {
    	return;
	}
    if (t == T)
    {
        if (mat[x][y] == 'D')
        {
        	ok = true;
		}
        return;
    }
    vis[x][y] = true;
    for (int i = 0; i < 4; i++)
    {
        int tx = x + dx[i];
        int ty = y + dy[i];
        if (tx < 0 || tx >= n || ty < 0 || ty >= m || mat[tx][ty] == 'X' || vis[tx][ty])
        {
        	continue;
		}
        dfs(tx, ty, t + 1);
    }
    vis[x][y] = false;
}
int main() 
{
    cin >> n >> m >> T;
    for (int i = 0; i < n; ++i) 
    {
        cin >> mat[i];
    }
    
	int sx, sy, ex, ey;
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            if (mat[i][j] == 'S')
            sx = i, sy = j;
            if (mat[i][j] == 'D')
            ex = i, ey = j;
        }
    }
    if ((sx + sy + ex + ey + T) % 2 != 0)
    {
        cout << "NO" << endl;
    }
    else
    {
        ok = false;
        dfs(sx, sy, 0);
        if (ok)
        	cout << "YES" << endl;
        else
       		cout << "NO" << endl;
    }
    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值