动态规划入门

蒜头君要回家,已知蒜头君在左下角(1,1)位置,家在右上角(n,n)坐标处。蒜头君走上一-个格子(i, j)会花费- -定的体力aij,而且蒜头君只会往家的方向走,也就是只能往上,或者往右走。蒜头君想知道他回到家需要花费的最少体力是多少。:

例如下图所示,格子中的数字代表走上该格子花费的体力:
在这里插入图片描述
对于该图来说,最优策略已在图上标出,最少花费体力为: 3+2 +4+3= 12。
我们把走到一个点看做一个状态,对蒜头君来说,走到一个点只有两种方式,-个是从下面走到该点,-种是从左边走到该点。那么点(i,j)要么是从(i-1,j)走到(i,j),要么是从点(i,j-1)走到(i,j)。

所以从哪个点走到(i,j)就是一个决策。接下来,我们用dp(i,j)来代表走到点(i,j)一共花费的最少体力。
我们需要花费最少力气走到家,所以可以得到状态转移方程: dp(i,j) = min(dp(i-1,j),dp(i,j-1))+ai,j。根据转移方程,我们可以推出走到每个点花费的最少体力。

实现主要代码:

int a[100][100]; // a数组代表在点(i,j)花费的体力
int dp[100][100]; // dp数组代表走到点(i,j)一共花费的最少体力
dp[1][1] = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        if (i == 1 && j == 1) {
            continue;
        } else if (i == 1) { //边界点
            dp[i][j] = dp[i][j-1] + a[i][j];
        } else if (j == 1) { //边界点
            dp[i][j] = dp[i-1][j] + a[i][j];
        } else {
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + a[i][j]; //转移方程
        }
    }
}

全部代码:

#include <iostream>
#include <algorithm>
using namespace std;
int a[110][110];
int dp[110][110];
int main() {
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> a[i][j];
        }
    }
    dp[1][1] = 0;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (i == 1 && j == 1)
            {
                continue;
            }
            else if (i == 1)
            {
                dp[i][j] = dp[i][j - 1] + a[i][j];
            }
            else if (j == 1)
            {
                dp[i][j] = dp[i - 1][j] + a[i][j];
            }
            else
            {
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + a[i][j];
            }
        }
    }
    cout << dp[n][n] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值