蒜头君要回家,已知蒜头君在左下角(1,1)位置,家在右上角(n,n)坐标处。蒜头君走上一-个格子(i, j)会花费- -定的体力aij,而且蒜头君只会往家的方向走,也就是只能往上,或者往右走。蒜头君想知道他回到家需要花费的最少体力是多少。:
例如下图所示,格子中的数字代表走上该格子花费的体力:
对于该图来说,最优策略已在图上标出,最少花费体力为: 3+2 +4+3= 12。
我们把走到一个点看做一个状态,对蒜头君来说,走到一个点只有两种方式,-个是从下面走到该点,-种是从左边走到该点。那么点(i,j)要么是从(i-1,j)走到(i,j),要么是从点(i,j-1)走到(i,j)。
所以从哪个点走到(i,j)就是一个决策。接下来,我们用dp(i,j)来代表走到点(i,j)一共花费的最少体力。
我们需要花费最少力气走到家,所以可以得到状态转移方程: dp(i,j) = min(dp(i-1,j),dp(i,j-1))+ai,j。根据转移方程,我们可以推出走到每个点花费的最少体力。
实现主要代码:
int a[100][100]; // a数组代表在点(i,j)花费的体力
int dp[100][100]; // dp数组代表走到点(i,j)一共花费的最少体力
dp[1][1] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == 1 && j == 1) {
continue;
} else if (i == 1) { //边界点
dp[i][j] = dp[i][j-1] + a[i][j];
} else if (j == 1) { //边界点
dp[i][j] = dp[i-1][j] + a[i][j];
} else {
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + a[i][j]; //转移方程
}
}
}
全部代码:
#include <iostream>
#include <algorithm>
using namespace std;
int a[110][110];
int dp[110][110];
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
dp[1][1] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (i == 1 && j == 1)
{
continue;
}
else if (i == 1)
{
dp[i][j] = dp[i][j - 1] + a[i][j];
}
else if (j == 1)
{
dp[i][j] = dp[i - 1][j] + a[i][j];
}
else
{
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + a[i][j];
}
}
}
cout << dp[n][n] << endl;
return 0;
}