最大连续子序列和

举例描述
以- 2,11,-4, 13,- 5, - 2为例。
刚开始ans和sum均为0。
到达-2时,sum+(-2)< 0,置sum为0,不更新ans。
到达l1时,sum+11>0,置sum为11,更新ans为11。
到达-4时,sum+(-4)>0,置sum为7,不更新ans。
到达13时,sum+13>0,置sum为20,更新ans为20。
到达一5时,sum +(-5)> 0,置sum为15,不更新ans。
到达-2时,sum +(-2)> 0,置sum为13,不更新ans。
得到最后答案为20。
样例一
6
-2 11 -4 13 -5 -2
20
样例二
6
-2 -11 -4 -13 -5 -2
-2
代码:

#include <cstdio>
#include <iostream>
using namespace std;

int main()
{
	int n;
	scanf("%d", &n);
	int a[n], dp[n] = { 0 };
	for (int i = 0 ; i < n; i++)
	{
		scanf("%d", &a[i]);
	}
	dp[0] = a[0];
	int ans = -0x3f3f3f3f;
	for (int i = 0; i < n; i++)
	{
		dp[i] = max(a[i], dp[i - 1] + a[i]);
		ans = max(dp[i], ans);
	}
	printf("%d\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值