题目描述:
大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1六个排列。
任务描述:
给出某个排列,求出这个排列的下k个排列,如果遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。
比如:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。
Input
第一行是一个正整数m,表示测试数据的个数,下面是m组测试数据,每组测试数据第一行是2个正整数n( 1 <= n < 1024 )和k(1<=k<=64),第二行有n个正整数,是1,2 … n的一个排列。
Output
对于每组输入数据,输出一行,n个数,中间用空格隔开,表示输入排列的下k个排列。
Sample Input
3 3 1 2 3 1 3 1 3 2 1 10 2 1 2 3 4 5 6 7 8 9 10
Sample Output
3 1 2 1 2 3 1 2 3 4 5 6 7 9 8 10
题解:
就是让你求当前排列的第k个排列,直接求就行了,可以用STL的next_permutation(用法:next_permutation)
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1050;
int a[maxn],b[maxn],c[maxn];
bool cmp(int a,int b){
return a>b;
}
int main(){
int T,n,k;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
b[i]=c[i]=a[i];
}
// sort(b,b+n,cmp);
// sort(c,c+n);
// int ans=0;
// do{
// if(ans==k){
// for(int i=0;i<n;i++){
// if(i==0) printf("%d",a[i]);
// else printf(" %d",a[i]);
// }
// printf("\n");
// break;
// }
// int flag=1;
// for(int i=0;i<n;i++)
// if(a[i]!=b[i])
// flag=0;
// if(flag){
// for(int i=0;i<n;i++)
// a[i]=c[i];
// ans++;
// if(ans==k){
// for(int i=0;i<n;i++){
// if(i==0) printf("%d",a[i]);
// else printf(" %d",a[i]);
// }
// printf("\n");
// break;
// }
// else{
// ans++;
// continue;
// }
// }
// else ans++;
// }
// while(next_permutation(a,a+n));
for(int i=1;i<=k;i++)
next_permutation(a,a+n);
for(int i=0;i<n;i++){
if(i==0) printf("%d",a[i]);
else printf(" %d",a[i]);
}
printf("\n");
}
return 0;
}