题目链接:https://codeforces.com/contest/1284/problem/D
题目大意:
有n场表演,有两个场地,如果在a场地表演则需要占用[sai,eai]这段时间,在b场地表演则需要占用 [sbi,ebi] 这段时间。如果两个表演,占用了同一个时间点,则认为这两个表演是冲突的。但因为每个表演在a场地和b场地的时间段不同,有表演可能在一个场地冲突而在另一个不冲突。所以所有表演中任取两个表演是否都满足都冲突或者都不冲突,。
Input
3
1 3 2 4
4 5 6 7
3 4 5 5
OutputNo
题解:
很好很巧妙的一道题,需要用到线段树|ST表维护最大值+二分。
大致思路:我们可以先枚举在a场地的表演,按照sa和ea升序排序,然后二分求出和a场地冲突的所有表演场次,然后再用线段树维护这些冲突的表演的sb的区间最小值和eb的区间最大值。
为什么要维护这个呢?因为基于这样一个事实,对于两个表演[s1,e1]和[x,y],如果两个表演不冲突那么需要满足s1>y||e1<x。而对于多个表演[s1,e1],[s2,e2].......都与[x,y]冲突,则不存在si>y||ei<x,因此如果max(s1....si)>y||min(e1...ei)<x,则存在表演与[x,y]不冲突。
这样我们可以首先线段树维护sb的所有区间最大值和eb的所有区间最小值,然后二分求出与a场地冲突的表演场次的区间,查询这个区间内的sb的最大值以及eb的最小值,判断是否符合条件就行了。
这里二分有一个很重要的技巧,如果两个表演冲突的话,那么需要满足max(s1,s2)<=min(e1,e2)
对于一个表演[s1,e1],我们二分找到[e1,INF]的位置pos,因为max(s1,e1)<=min(e1,INF) -> e1<=e1,而对于[i+1,pos]的a表演都和当前位置的表演冲突,因为pos位置前面的表演要么sa小要么ea小。
这里只考虑了在a场地表演冲突,b场地表演不冲突的情况,没有考虑b场地表演冲突,a场地表演不冲突的情况,这里我们只需要把sa和sb,以及ea和eb交换一下。
很巧妙的一道题。
代码实现:
#pragma GCC optimize(2) #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<cstdio> #include<cstdlib> #include<vector> #include<map> #include<set> #include<stack> #include<queue> #define PI atan(1.0)*4 #define E 2.718281828 #define rp(i,s,t) for (register int i = (s); i <= (t); i++) #define RP(i,t,s) for (register int i = (t); i >= (s); i--) #define ll long long #define ull unsigned long long #define mst(a,b) memset(a,b,sizeof(a)) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define pii pair<int,int> #define mp make_pair #define pb push_back #define debug printf("ac\n"); using namespace std; inline int read() { int a=0,b=1; char c=getchar(); while(c<'0'||c>'9') { if(c=='-') b=-1; c=getchar(); } while(c>='0'&&c<='9') { a=(a<<3)+(a<<1)+c-'0'; c=getchar(); } return a*b; } const int INF = 0x3f3f3f3f; const int N = 1e5+7; struct node{ int sa,ea,sb,eb; node(){}; node(int sa,int ea,int sb,int eb):sa(sa),ea(ea),sb(sb),eb(eb){}; bool operator<(const node& others){ return sa==others.sa?ea<others.ea:sa<others.sa; } }p[N]; int MAX[N<<2],MIN[N<<2]; void pushup(int rt){ MAX[rt]=max(MAX[rt<<1],MAX[rt<<1|1]); MIN[rt]=min(MIN[rt<<1],MIN[rt<<1|1]); } void build(int l,int r,int rt){ if(l==r){ MAX[rt]=p[l].sb; MIN[rt]=p[l].eb; return ; } int m=l+r>>1; build(lson); build(rson); pushup(rt); } int queryMIN(int l,int r,int rt,int ql,int qr){ if(ql<=l&&r<=qr) return MIN[rt]; int m=l+r>>1; if(qr<=m) return queryMIN(lson,ql,qr); else if(ql>=m) return queryMIN(rson,ql,qr); else return min(queryMIN(lson,ql,m),queryMIN(rson,m+1,qr)); } int queryMAX(int l,int r,int rt,int ql,int qr){ if(ql<=l&&r<=qr) return MAX[rt]; int m=l+r>>1; if(qr<=m) return queryMAX(lson,ql,qr); else if(ql>=m) return queryMAX(rson,ql,qr); else return max(queryMAX(lson,ql,m),queryMAX(rson,m+1,qr)); } bool solve(int n){ sort(p+1,p+1+n); build(1,n,1); rp(i,1,n){ int pos=lower_bound(p+1,p+1+n,node(p[i].ea,INF,0,0))-p-1; if(i+1>pos) continue; if(queryMIN(1,n,1,i+1,pos)<p[i].sb||queryMAX(1,n,1,i+1,pos)>p[i].eb) return false; } return true; } int main(){ int n=read(); rp(i,1,n) p[i].sa=read(),p[i].ea=read(),p[i].sb=read(),p[i].eb=read(); int cnt=0; if(solve(n)) cnt++; rp(i,1,n) swap(p[i].sa,p[i].sb),swap(p[i].ea,p[i].eb); if(solve(n)) cnt++; if(cnt==2) cout<<"Yes"<<endl; else cout<<"No"<<endl; return 0; }
CodeForces1284D New Year and Conference——线段树|ST表+二分
最新推荐文章于 2024-07-08 18:49:00 发布