三角形内部的任一点都可以表示为顶点的线性组合

写在前边

 本文参考博文,但是博客中没有使用向量方法进行完整的证明,所以这篇博客在原始博文基础上再证明一下。写该篇博客的目的是为了初步理解后边的单纯形法算法详解博客中的这句话凸多边形内部任一点都可以表示成顶点的线性组合

证明

题目

证明:三角形内部的任一点都可以表示为顶点的线性组合
在这里插入图片描述
 用A、B、C三个顶点的线性组合表示D和E的顶点。其中,D是三角形ABC(2维单纯形)边上的一点,E是三角形ABC内部的一点。假设对于上图, O A → = ( a 1 , a 2 ) , O B → = ( b 1 , b 2 ) , O C → = ( c 1 , c 2 ) \overrightarrow{OA} =(a_1,a_2),\overrightarrow{OB} =(b_1,b_2),\overrightarrow{OC} =(c_1,c_2) OA =(a1,a2),OB =(b1,b2),OC =(c1,c2)

三角形边上一点可由三个顶点的线性组合表示

表示D点:D是BC上一点,则有 B D → = λ B C → \overrightarrow{BD}=\lambda\overrightarrow{BC} BD =λBC λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1]。那么
O D → = O B → + B D → = O B → + λ B C → = O B → + λ ( O C → − O B → ) = λ O C → + ( 1 − λ ) O B → \begin{matrix} \overrightarrow{OD}&=&\overrightarrow{OB}+\overrightarrow{BD}\\ &= & \overrightarrow{OB}+\lambda\overrightarrow{BC}\\ &= & \overrightarrow{OB}+\lambda(\overrightarrow{OC}-\overrightarrow{OB} )\\ &=&\lambda\overrightarrow{OC}+(1-\lambda)\overrightarrow{OB} \end{matrix} OD ====OB +BD OB +λBC OB +λ(OC OB )λOC +(1λ)OB
 所以,D点的坐标就可以表示为 ( ( 1 − λ ) b 1 + λ c 1 , ( 1 − λ ) b 2 + λ c 2 ) ((1-\lambda)b_1+\lambda c_1,(1-\lambda)b_2+\lambda c_2) ((1λ)b1+λc1(1λ)b2+λc2)

三角形内部一点可由三个顶点的线性组合表示

表示E点:E是DA上一点,则有 D E → = ξ D A → \overrightarrow{DE}=\xi \overrightarrow{DA} DE =ξDA ξ ∈ [ 0 , 1 ] \xi\in[0,1] ξ[0,1]。那么
O E → = O D → + D E → = O B → + λ ( O C → − O B → ) + ξ D A → = O B → + λ ( O C → − O B → ) + ξ ( O A → − O D → ) = O B → + λ ( O C → − O B → ) + ξ { O A → − [ O B → + λ ( O C → − O B → ) ] } = ξ O A → + ( 1 − λ − ξ + λ ξ ) O B → + ( λ − λ ξ ) O C → \begin{matrix} \overrightarrow{OE}&=&\overrightarrow{OD}+\overrightarrow{DE}\\ &= & \overrightarrow{OB}+\lambda(\overrightarrow{OC}-\overrightarrow{OB} )+\xi\overrightarrow{DA}\\ &= & \overrightarrow{OB}+\lambda(\overrightarrow{OC}-\overrightarrow{OB} )+\xi (\overrightarrow{OA}-\overrightarrow{OD} )\\ &=&\overrightarrow{OB}+\lambda(\overrightarrow{OC}-\overrightarrow{OB} )+\xi \left\{\overrightarrow{OA}- [\overrightarrow{OB}+\lambda(\overrightarrow{OC}-\overrightarrow{OB} )]\right\}\\ &=&\xi \overrightarrow{OA}+(1-\lambda-\xi+\lambda\xi)\overrightarrow{OB}+(\lambda-\lambda\xi)\overrightarrow{OC} \end{matrix} OE =====OD +DE OB +λ(OC OB )+ξDA OB +λ(OC OB )+ξ(OA OD )OB +λ(OC OB )+ξ{OA [OB +λ(OC OB )]}ξOA +(1λξ+λξ)OB +(λλξ)OC
 所以,E点的坐标就可以表示为 ( ξ a 1 + ( 1 − λ − ξ + λ ξ ) b 1 + ( λ − λ ξ ) c 1 , ξ a 2 + ( 1 − λ − ξ + λ ξ ) b 2 + ( λ − λ ξ ) c 2 ) (\xi a_1+(1-\lambda-\xi+\lambda\xi)b_1+(\lambda-\lambda\xi)c_1,\xi a_2+(1-\lambda-\xi+\lambda\xi)b_2+(\lambda-\lambda\xi)c_2) (ξa1+(1λξ+λξ)b1+(λλξ)c1ξa2+(1λξ+λξ)b2+(λλξ)c2)

 综上,三角形 ABC 内部或边界上的任意一点可以表示为 p 1 a + p 2 b + p 3 c p_1a+p_2b+p_3c p1a+p2b+p3c。其中 p 1 , p 2 , p 3 ∈ [ 0 , 1 ] p_1,p_2,p_3\in[0,1] p1,p2,p3[0,1], 且 p 1 + p 2 + p 3 = 1 p_1+p_2+p_3=1 p1+p2+p3=1。(对于E点坐标有 ξ + ( 1 − λ − ξ + λ ξ ) + ( λ − λ ξ ) = 1 \xi+(1-\lambda-\xi+\lambda\xi)+(\lambda-\lambda\xi)=1 ξ+(1λξ+λξ)+(λλξ)=1

扩展—单纯形解线性规划

 事实上,如果不限定在三角形内部,则对 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3 的范围没要求,只要求它们相加为1即可。这表明了平面的自由度为2。

举例:线性规划的单纯形法的最简单的情形。假设有如下线性规划问题
a 1 x 1 + a 2 x 2 = b 1 a_1x_1+a_2x_2=b_1 a1x1+a2x2=b1 s . t . a 1 ≠ 0 , a 2 ≠ 0 x 1 ≥ 0 , x 2 ≥ 0 b 1 ≥ 0 s.t.a_1\ne0,a_2\ne0\\ x_1\ge0,x_2\ge0\\ b_1\ge0 s.t.a1=0,a2=0x10,x20b10

那么, x 1 x_1 x1为基变量时取 x 1 = b 1 / a 1 x_1=b_1/a_1 x1=b1/a1,或 x 2 x_2 x2为基变量时取 x 2 = b 1 / a 2 x_2=b_1/a_2 x2=b1/a2都是基本解,且该线性方程的基本解只有这两个。则该线性方程的所有可行解都可以用
λ x 1 + ( 1 − λ ) x 2 = λ b 1 / a 1 + ( 1 − λ ) b 1 / a 2 \lambda x_1+(1-\lambda)x_2=\lambda b_1/a_1+(1- \lambda) b_1/a_2 λx1+(1λ)x2=λb1/a1+(1λ)b1/a2来表示(可行域内的解可以用顶点线性表示)。其中 λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1]。这是容易证明的。如果不规定 x 1 , x 2 x_1,x_2 x1x2必须为非负,则对 λ \lambda λ 的范围没要求。这也表明了直线的自由度为1。

基本解和基本可行解

可行解:满足某线性规划所有的约束条件的任意一组决策变量的取值。
基本解:在m个等式约束条件、n个非负变量的情况下,确定m个基变量、(n-m)个非基变量,令非基变量为零,得到m个方程&m个未知数所求出来的解称为对应于基B的一个基本解。
基本可行解:满足非负约束的基本解。(即:单纯形法中的可行域的顶点)

例题: x ( 1 ) x^{(1)} x(1)不满足非负约束,所以是基本解。 x ( 2 ) x^{(2)} x(2)满足非负约束,所以是基本可行解。
在这里插入图片描述
在这里插入图片描述

参考

博客
例题

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值