三角形的坐标映射转换

一、求解的问题

从一个坐标系(x,y)中的已知三点坐标 ( x i , j , k , y i , j , k ) (x_{i,j,k},y_{i,j,k}) (xi,j,k,yi,j,k),映射到另一个坐标系(u,v)中的三点坐标 [ ( 1 , 0 ) , ( 0 , 1 ) , ( 0 , 0 ) ] [(1,0),(0,1),(0,0)] [(1,0),(0,1),(0,0)]的问题,求解其中的映射关系,讨论不同坐标下的一个微分问题。
请添加图片描述
简单来说,就是求解一个坐标变换矩阵 M M M,将坐标系(x,y)中的三点坐标矩阵 A A A 转换到坐标系(u,v) B B B 中去:
B = M × A A = [ x i x j x k y i y j y k 1 1 1 ] , B = [ 1 0 0 0 1 0 1 1 1 ] M = B ⋅ A − 1 = [ x i − x k x j − x k x k y i − y k y j − y k y k 0 0 1 ] x = ( x i − x k ) u + ( x j − x k ) v + x k y = ( y i − y k ) u + ( y j − y k ) v + x k \begin{aligned} B&=M\times A\\ A=\begin{bmatrix} x_i &x_j& x_k\\ y_i &y_j& y_k\\ 1 &1 &1 \end{bmatrix}&,B=\begin{bmatrix} 1&0&0\\ 0&1&0\\ 1&1&1 \end{bmatrix}\\ M&=B\cdot A^{-1}\\ &=\begin{bmatrix} x_i-x_k&x_j-x_k&x_k\\ y_i-y_k&y_j-y_k&y_k\\ 0&0&1 \end{bmatrix}\\ x&=(x_i-x_k)u+(x_j-x_k)v+x_k\\ y&=(y_i-y_k)u+(y_j-y_k)v+x_k \end{aligned} BA=xiyi1xjyj1xkyk1Mxy=M×A,B=101011001=BA1=xixkyiyk0xjxkyjyk0xkyk1=(xixk)u+(xjxk)v+xk=(yiyk)u+(yjyk)v+xk
则它们之间的微分关系为:
∣ d e t ( J ) ∣ = ∣ d x d u d x d v d y d u d y d v ∣ = ∣ x i − x k x j − x k y i − y k y j − y k ∣ \begin{aligned} \left|det(J)\right|=\left|\begin{matrix} \dfrac{dx}{du}&\dfrac{dx}{dv}\\ \dfrac{dy}{du}&\dfrac{dy}{dv}\\ \end{matrix}\right|=\left|\begin{matrix} x_i-x_k&x_j-x_k\\ y_i-y_k&y_j-y_k\\ \end{matrix}\right| \end{aligned} det(J)=dudxdudydvdxdvdy=xixkyiykxjxkyjyk

他们之间的面积微元关系为:
d x × d y = ( d x d u d u + d x d v d v ) × ( d y d u d u + d y d v d v ) = d x d v d v × d y d u d u + d x d u d u × d y d v d v = ( d x d u d y d v − d x d v d y d u ) d u × d v = ∣ d x d u d x d v d y d u d y d v ∣ d u × d v = ∣ det ⁡ ( J ) ∣ d u × d v \begin{aligned} d x \times d y&=\left(\frac{d x}{d u} d u+\frac{d x}{d v} d v\right) \times\left(\frac{d y}{d u} d u+\frac{d y}{d v} d v\right)\\ &=\frac{d x}{d v} d v \times \frac{d y}{d u} d u+\frac{d x}{d u} d u \times \frac{d y}{d v} d v\\ &=\left(\frac{d x}{d u} \frac{d y}{d v}-\frac{d x}{d v} \frac{d y}{d u}\right) d u \times d v\\ &=\left|\begin{array}{ll}\dfrac{d x}{d u} & \dfrac{d x}{d v} \\ \dfrac{d y}{d u} & \dfrac{d y}{d v}\end{array}\right| d u \times d v\\ &=|\operatorname{det}(J)| d u \times d v \end{aligned} dx×dy=(dudxdu+dvdxdv)×(dudydu+dvdydv)=dvdxdv×dudydu+dudxdu×dvdydv=(dudxdvdydvdxdudy)du×dv=dudxdudydvdxdvdydu×dv=det(J)du×dv

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值