排序算法 | 快速排序,算法的图解、实现、复杂度和稳定性分析与优化

本文详细介绍了快速排序算法,包括其原理、代码实现、复杂度和稳定性分析,以及如何通过优化提高排序效率。快速排序是平均性能最优的内部排序算法,通过分治法实现,但因其不稳定性,可能在某些情况下导致排序效果不佳。文章还讨论了如何通过选择合适的枢轴元素和随机化策略来改善其性能。
摘要由CSDN通过智能技术生成
  • 今天讲解一下快速排序算法的原理以及实现、复杂度和稳定性分析与优化

在这里插入图片描述



1 快速排序的原理

快速排序是所有内部排序算法中平均性能最优的排序算法

快速排序是对冒泡排序算法的一种改进

快速排序由C. A. R. Hoare在1960年提出。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

快速排序的基本思想是基于分治法

在待排序表L[1…n]中任取一个元素pivot作为枢轴(或基准,通常取首元素)

也就是常见的 固定位置选取基准

通过一趟排序将待排序表划分为独立的两部分L[1…k-1]和L[k+1…n]

使得L[1…k-1]中的所有元素小于pivot

L[k+1.n]中的所有元素大于等于pivot

则pivot放在了其最终位置L(k)上

这个过程称为一趟快速排序(或一次划分)

然后分别递归地对两个子表重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终位置上。

在这里插入图片描述

一趟快速排序的过程是一个交替搜索和交换的过程

常见方法就是 挖坑法

不过需要注意:

如果选择 第一个数组元素为基准时,必须先 从后向前进行

如果选择 最后一个数组元素为基准时,必须先 从前向后进行

挖坑法的流程:

在这里插入图片描述


2 快速排序代码实现

首先写好划分操作算法,然后递归调用~


// 每一次的 划分操作
int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值