Python深度学习
文章平均质量分 96
qq_43479892
这个作者很懒,什么都没留下…
展开
-
Python深度学习篇七《高级的深度学习最佳实践》
前言前期回顾: Python深度学习篇六《深度学习用于文本和序列》上面这篇里面写了文本和序列相关。本章将介绍几种强大的工具,可以让你朝着针对困难问题来开发最先进模型这一目标更近 一步。利用 Keras 函数式 API,你可以构建类图(graph-like)模型、在不同的输入之间共享某一层, 并且还可以像使用 Python 函数一样使用 Keras 模型。Keras 回调函数和 TensorBoard 基于浏览器 的可视化工具,让你可以在训练过程中监控模型。我们还会讨论其他几种最佳实践,包括批标准化、残原创 2020-12-27 20:09:17 · 842 阅读 · 2 评论 -
Python深度学习篇六《深度学习用于文本和序列》
前言前期回顾: Python深度学习篇五《深度学习用于计算机视觉》上面这篇里面写了计算机视觉相关。卷积神经网络是解决视觉分类问题的最佳工具。卷积神经网络通过学习模块化模式和概念的层次结构来表示视觉世界。卷积神经网络学到的表示很容易可视化,卷积神经网络不是黑盒。现在你能够从头开始训练自己的卷积神经网络来解决图像分类问题。你知道了如何使用视觉数据增强来防止过拟合。你知道了如何使用预训练的卷积神经网络进行特征提取与模型微调。你可以将卷积神经网络学到的过滤器可视化,也可以将类激活热力图可视化。原创 2020-12-27 19:57:22 · 975 阅读 · 1 评论 -
Python深度学习篇五《深度学习用于计算机视觉》
前言前期回顾:Python深度学习篇四《机器学习基础》上面这篇里面写了关于向量数据最常见的机器学习任务。好,接下来切入正题。本章包括以下内容:理解卷积神经网络(convnet)使用数据增强来降低过拟合使用预训练的卷积神经网络进行特征提取微调预训练的卷积神经网络将卷积神经网络学到的内容及其如何做出分类决策可视化本章将介绍卷积神经网络,也叫 convnet,它是计算机视觉应用几乎都在使用的一种深度学习模型。你将学到将卷积神经网络应用于图像分类问题,特别是那些训练数据集较小的问题。 如果你原创 2020-12-11 07:20:57 · 583 阅读 · 1 评论 -
Python深度学习篇四《机器学习基础》
前言前期回顾:Python深度学习篇三《神经网络入门》上面这篇里面写了关于向量数据最常见的机器学习任务。好,接下来切入正题。本章包括以下内容:除分类和回归之外的机器学习形式评估机器学习模型的规范流程为深度学习准备数据特征工程解决过拟合处理机器学习问题的通用工作流程学完第 3 章的三个实例,你应该已经知道如何用神经网络解决分类问题和回归问题,而且 也看到了机器学习的核心难题:过拟合。本章会将你对这些问题的直觉固化为解决深度学习问 题的可靠的概念框架。我们将把所有这些概念——模型评估、原创 2020-12-09 07:40:50 · 1229 阅读 · 1 评论 -
Python深度学习篇三《神经网络入门》
前言前期回顾:Python深度学习篇二《神经网络的数学基础》上面这篇里面写了深度学习的所需的基础知识。好,接下来切入正题。本章的目的是让你开始用神经网络来解决实际问题。你将进一步巩固在第2 章第一个示例 中学到的知识,还会将学到的知识应用于三个新问题,这三个问题涵盖神经网络最常见的三种 使用场景:二分类问题、多分类问题和标量回归问题。本章将进一步介绍神经网络的核心组件,即层、网络、目标函数和优化器;还会简要介绍 Keras,它是贯穿本书的Python 深度学习库。你还将建立深度学习工作站,安装好T原创 2020-12-09 07:31:06 · 1796 阅读 · 0 评论 -
Python深度学习篇二《神经网络的数学基础》
前言前期回顾:Python深度学习篇一《什么是深度学习》上面这篇里面写了深度学习的历史及概念的介绍。好,接下来切入正题。要理解深度学习,需要熟悉很多简单的数学概念:张量、张量运算、微分、梯度下降等。 本章目的是用不那么技术化的文字帮你建立对这些概念的直觉。特别地,我们将避免使用数学符号,因为数学符号可能会令没有任何数学背景的人反感,而且对解释问题也不是绝对必要的。本章将首先给出一个神经网络的示例,引出张量和梯度下降的概念,然后逐个详细介绍。 请记住,这些概念对于理解后续章节中的示例至关重要。读完原创 2020-12-02 23:17:16 · 906 阅读 · 0 评论 -
Python深度学习篇一《什么是深度学习》
在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习 和人工智能都出现在不计其数的文章中,而这些文章通常都发表于非技术出版物。我们的未来被描绘成拥有智能聊天机器人、自动驾驶汽车和虚拟助手,这一未来有时被渲染成可怕的景象, 有时则被描绘为乌托邦,人类的工作将十分稀少,大部分经济活动都由机器人或人工智能体 (AI agent)来完成。对于未来或当前的机器学习从业者来说,重要的是能够从噪声中识别出信号, 从而在过度炒作的新闻稿中发现改变世界的重大进展。我们的未来充满风险,而你可以在其中原创 2020-12-01 22:41:46 · 1319 阅读 · 0 评论