与中心算法相似
DDA算法解决了只做加法运算
中心算法解决了只做整数加法运算
Bresenham画线法
1、前言
此算法是利用光栅网格上的点到真实直线上的点的距离(成为误差项),来标定下一个点的位置初始值
(x1,y1)误差项d=0。接下来的d=d(上一个点的d)+k.【增长的K为直线的斜率,由于每次增长的x都为1,所以增长的y(!!!注意是增长的y,不是y的值)就为k】
一旦d大于或者等于1,就要d=d-1,目的是保证d永远在0-1之间
2、算法改进
(1)改进一
令e=d-0.5。目的是把0.5取消,这样就可以变成:
此时式子表示为:
(2)改进二
为了使e的值为整数,因为是在中心算法的基础山进一步衍生出的画线算法,所以中心算法做具有的Bresenham算法也一定要有,所以要将e的值尽可能的变为整数。所以就产生了
在二倍的基础上又乘x的变化值(就是终点和起点的x的差值),目的就是尽可能的把误差项变为整数运算。
此时就变为
e(初值)=2* 0.5*
Δ
\Delta
Δx ,即e(初值)= -
Δ
\Delta
Δx
每走一步 相对之前的变化为:
同理,当e>0时,变为:
3、总结
当误差项e>0时,下一步e=e+2
Δ
\Delta
Δy-2
Δ
\Delta
Δx ,坐标点向右上方(对角线方向)前进(x+1,y+1)
当误差项e<0时,下一步的e=e+2
Δ
\Delta
Δy,坐标点向正右方前进(x+1,y)