D. Almost All Divisors(div3)
2 seconds & 256 megabytes
We guessed some integer number x. You are given a list of almost all its divisors. Almost all means that there are all divisors except 1 and x in the list.
Your task is to find the minimum possible integer x that can be the guessed number, or say that the input data is contradictory and it is impossible to find such number.
You have to answer t independent queries.Input
The first line of the input contains one integer t (1≤t≤25) — the number of queries. Then t queries follow.
The first line of the query contains one integer n (1≤n≤300) — the number of divisors in the list.
The second line of the query contains n integers d1,d2,…,dn (2≤di≤106), where di is the i-th divisor of the guessed number. It is guaranteed that all values di are distinct.Output
For each query print the answer to it.
If the input data in the query is contradictory and it is impossible to find such number x that the given list of divisors is the list of almost all its divisors, print -1. Otherwise print the minimum possible x.Example
input
2
8
8 2 12 6 4 24 16 3
1
2output
48
4
题目。
题意:给你一个不重复list,求x。x满足:x的所有因子(除了1和它本身)都在list里。
1e6的list元素,x最大1e12,暴力找因子只需 O(sqrt(n)) 即1e6复杂度,题目可能就给过了,(25组数据如果每组1e6,那也gg )。
比赛时卡在不会求因子个数(还是要相信暴力出奇迹!),给你萌康康这个,本题用不着。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
const int Max_num=1e6+17;
int real[Max_num],cnt;
bool book[Max_num],prim[Max_num];
void ol(){ //为了特判n=1,x=比较大的数。
int tail=0;
prim[1]=prim[0]=true;
for(int i=2;i<Max_num;++i){
if(!prim[i]) real[tail++]=i;
for(int j=0;j<tail&&real[j]*i<=Max_num;++j){
prim[i*real[j]]=true;
if(!i%real[j]) break;
}
}
}
bool find(ll x){
int i;
for(i=2;(ll)i*(ll)i<x;++i){
if(x%i==0){
if(!book[i]||!book[x/i]) return false;
cnt+=2;
}
}
if((ll)i*(ll)i==x){
if(!book[i])return false;
cnt++;
}
return true;
}
int main(){
int T,n,x;scanf("%d",&T);
ol();
while(T--){
int maxx=-0x3f3f3f3f,minn=0x3f3f3f3f;
memset(book,false,sizeof(book));
scanf("%d",&n);
for(int i=0;i<n;++i){
scanf("%d",&x);
maxx=max(x,maxx);
minn=min(x,minn);
book[x]=true;
}
if(n==1&&!prim[x]){printf("%I64d\n",(ll)x*(ll)x);continue;} //特判
ll ans=(ll)maxx*(ll)minn; //最大因子*最小因子=list最小公倍数
cnt=0;
if(find(ans)&&cnt==n)printf("%I64d\n",ans);
else printf("-1\n");
}
return 0;
}