CF #560 (Div. 3) D. Almost All Divisors【思维】

D. Almost All Divisors(div3)


2 seconds & 256 megabytes
We guessed some integer number x. You are given a list of almost all its divisors. Almost all means that there are all divisors except 1 and x in the list.
Your task is to find the minimum possible integer x that can be the guessed number, or say that the input data is contradictory and it is impossible to find such number.
You have to answer t independent queries.

Input

The first line of the input contains one integer t (1≤t≤25) — the number of queries. Then t queries follow.
The first line of the query contains one integer n (1≤n≤300) — the number of divisors in the list.
The second line of the query contains n integers d1,d2,…,dn (2≤di≤106), where di is the i-th divisor of the guessed number. It is guaranteed that all values di are distinct.

Output

For each query print the answer to it.
If the input data in the query is contradictory and it is impossible to find such number x that the given list of divisors is the list of almost all its divisors, print -1. Otherwise print the minimum possible x.

Example

input

2
8
8 2 12 6 4 24 16 3
1
2

output

48
4

题目。
题意:给你一个不重复list,求x。x满足:x的所有因子(除了1和它本身)都在list里。

1e6的list元素,x最大1e12,暴力找因子只需 O(sqrt(n)) 即1e6复杂度,题目可能就给过了,(25组数据如果每组1e6,那也gg )。

比赛时卡在不会求因子个数(还是要相信暴力出奇迹!),给你萌康康这个,本题用不着
在这里插入图片描述

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long

const int Max_num=1e6+17;
int real[Max_num],cnt;
bool book[Max_num],prim[Max_num];

void ol(){	//为了特判n=1,x=比较大的数。
	int tail=0;
	prim[1]=prim[0]=true;
	for(int i=2;i<Max_num;++i){
		if(!prim[i]) real[tail++]=i;
		for(int j=0;j<tail&&real[j]*i<=Max_num;++j){
			prim[i*real[j]]=true;
			if(!i%real[j]) break;
		}
	}
}

bool find(ll x){
	int i;
	for(i=2;(ll)i*(ll)i<x;++i){
		if(x%i==0){
			if(!book[i]||!book[x/i]) return false;
			cnt+=2;
		}
	}
	if((ll)i*(ll)i==x){
		if(!book[i])return	false;
		cnt++;
	}
	return	true;
}

int main(){
	int T,n,x;scanf("%d",&T);
	ol();
	while(T--){
		int maxx=-0x3f3f3f3f,minn=0x3f3f3f3f;
		memset(book,false,sizeof(book));
		scanf("%d",&n);
		for(int i=0;i<n;++i){
			scanf("%d",&x);
			maxx=max(x,maxx);
			minn=min(x,minn);
			book[x]=true;
		} 
		if(n==1&&!prim[x]){printf("%I64d\n",(ll)x*(ll)x);continue;}	//特判
		ll ans=(ll)maxx*(ll)minn;	//最大因子*最小因子=list最小公倍数
		cnt=0;
		if(find(ans)&&cnt==n)printf("%I64d\n",ans);
		else printf("-1\n");
	}	
	return	0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值