线段树



1 写在前面

我不会线段树。

暑假啦,我来更新惹!
我也知道这样敲没什么用,所以可能这会变成坑。
先看个大概,等写题用到了再学,用着用着就会了…吧。
为什么我感觉最近遇到好多线段树的题,知道要用这个,却不会,就很难受。

嗯我先学图。

1.1 什么是线段树

线段树是一种高级数据结构。


2 线段树基础操作


2.1 线段树的构建和查询

void build(int l,int r,int x){
	if(l==r){sum[x]=a[l];return;}
	int mid=(l+r)>>1; build(l,mid,x<<1); build(mid+1,r,x<<1|1);
	update(x);	
} 

int query(int A,int B,int l,int r,int x){
	if(A<=l&&r<=B)	return	sum[x];
	int mid=(l+r)>>1,ans=0;
	if(A<=mid)	ans+=query(A,B,l,mid,x<<1);
	if(mid<B)	ans+=query(A,B,mid+1,r,x<<1|1) 
	return	ans;
}

线段树的数组储存
类似堆的储存方式。数组大小要开到 4*n ,因为不一定是完全二叉树。

建立线段树

自顶向下。

void build(int l,int r,int x){
	if(l==r){	//叶子结点 
		sum[x]=a[l];
		return;
	}
	int mid=(l+r)>>1;
	build(l,mid,x<<1);
	build(mid+1,r,x<<1|1);
	
	//建完左右子树,更新当前结点信息 
	update(x);	
} 

线段树的查询

也是自顶向下。

//在区间[l,r]中 ,询问区间[A,B]的值。 
int query(int A,int B,int l,int r,int x){

	//若 A<=l&&r<=B 直接返回此结点信息,停止递归 
	if(A<=l&&r<=B)	return	sum[x];
	
	int mid=(l+r)>>1,ans=0;
	
	//询问区间与左子结点有重合 
	if(A<=mid)	ans+=query(A,B,l,mid,x<<1);
	
	//询问区间与右子结点有重合 
	if(mid<B)	ans+=query(A,B,mid+1,r,x<<1|1) 
	return	ans;
}

线段树的链表储存(但我才不用链表)

struct node{
	//left和rigtt用来表示该结点代表的区间
	//value维护这个区间的信息,比如区间和等等 
	int left,right,value;
	//每个结点同时维护两个孩子的指针。 
	node *lchild,*rchild;
};


2.2 线段树的单点修改

线段树的单点修改

int change(int pos,int v,int l,int x){
	if(l==r){	//找到了叶子结点 
		sum[x]=v;
		return;
	}
	int mid=(l+r)>>1;
	//找pos在左结点还是右结点 
	if(pos<=mid)	change(pos,v,l,mid,x<<1);
	else	change(pos,v,mid+1,r,x<<1|1);
	update(x);		//别忘了更新这一整条路的sum 
} 

离散化

unique();

	int cnt=0;
	for(int i=0;i<n;++i)	bin[++cnt]=a[i];
	sort(bin,bin+n);
	cnt=unique(bin,bin+n)-bin;
	for(int i=0;i<n;++i)	a[i]=lower_bound(bin,bin+cnt,a[i])-bin; 


2.3 线段树的区间修改

延迟修改(Lazy tag)
直到需要用的时候才修改(标记下传),十分lazy,像我一样…
整体时间复杂度仍然维持在O(logn);

举个例子:把区间 [l,r] 的数都修改为 v ,查询区间和

为了方便,定义两个宏

#define ls (x<<1)
#define rs (x<<1|1)

//例如update()就可以写成: 
void update(int x){
	sum[x]=sum[ls]+sum[rs];
}

标记下传

void down(int l,int r,int x){
	int mid=(l+r)>>1;
	if(tag[x]>0){
		tag[ls]=tag[rs]=tag[x];
		
		//此处以把区间[l,r]的数都修改为 v 为例 
		sum[ls]=(mid-l+1)*tag[x];
		sum[rs]=(r-mid)*tag[x];
		
		tag[x]=0; 
	}
}

修改 [A,B] 区间为v

void change(int A,int B,int v,int l,int r,int x){
	if(A<=l&&r<=B){	//若[A,B]包含了 [l,r]
		tag[x]=v;	//延迟修改 停止递归 
		sum[x]=v*(r-l+1);
		return;	
	}
	
	//继续修改前,要检查是否需要下传标记 
	down(l,r,x);
	
	//修改子节点,类比查询操作 
	int mid=(l+r)>>1;
	if(A<=mid)	change(A,B,v,l,mid,ls);
	if(mid<B)	change(A,B,v,mid+1,r,rs);
	update(x);	//记得更新 
} 

查询 [A,B] 的区间和

int query(int A,int B,int l,int r,int x){
	if(A<l&&r<=B)	return	sum[x];
	down(l,r,x);	//继续查询之前,先检查是否要下传标记 
	int mid=(l+r)>>1,ret=0;
	if(A<=mid)	ret+=query(A,B,l,mid,ls);
	if(mid<B)	ret+=query(A,B,mid+1,r,rs);
	//update(x);	//查询就不用更新了,并没有值发生改变 
	return	ret;
}

举二个例子:把区间 [l,r] 的数都 加上 v ,查询区间和

//只需要修改down()和把change()改为add()


void down(int l,int r,int x){
	int mid=(l+r)>>1;
	if(tag[x]!=0){
		tag[ls]+=tag[x];
		tsg[rs]+=tag[x];
		sum[ls]+=(mid-l+1)*tag[x];
		sum[rs]+=(r-mid)*tag[x];
		tag[x]=0; 
	}
}

void add(int A,int B,int v,int l,int r,int x){
	if(A<=l&&r<=B){	//若[A,B]包含了 [l,r]
		tag[x]+=v;	//延迟修改 停止递归 
		sum[x]+=v*(r-l+1);
		return;	
	}
	
	//继续修改前,要检查是否需要下传标记 
	down(l,r,x);
	
	//修改子节点,类比查询操作 
	int mid=(l+r)>>1;
	if(A<=mid)	add(A,B,v,l,mid,ls);
	if(mid<B)	add(A,B,v,mid+1,r,rs);
	update(x);	//记得更新 
} 

举三个例子:把区间 [l,r] 的数都加上 v ,查询区间最小值

void update(int x){	//只改变了 here 
	Min[x]=min(Min[ls],Min[rs]);
}

void down(int l,int r,int x){
	int mid=(l+r)>>1;
	if(tag[x]!=0){	//here
		tag[ls]+=tag[x];
		tag[rs]+=tag[x];
		Min[ls]+=tag[x];
		Min[rs]+=tag[x];
		tag[x]=0;
	}
}

void add(int A,int B,int v,int l,int r,int x){
	if(A<=l&&r<=B){	
		tag[x]+=v;
		Min[x]+=v;	//here
		return;	
	}

	down(l,r,x);
	
	int mid=(l+r)>>1;
	if(A<=mid)	add(A,B,v,l,mid,ls);
	if(mid<B)	add(A,B,v,mid+1,r,rs);
	update(x);	
} 

int query(int A,int B,int l,int r,int x){
	if(A<l&&r<=B)	return	Min[x];	//here
	down(l,r,x);
	int mid=(l+r)>>1,ret=INF;	//here 
	if(A<=mid)	ret+=min(ret,query(A,B,l,mid,ls));	//here
	if(mid<B)	ret+=min(query(A,B,mid+1,r,rs));
	return	ret;
}

举四个例子:把区间 [l,r] 的数都加上 v ,查询区间最小值的个数

void update(int x){	
	if(Min[ls]==Min[rs]){	//若左右子结点最小值相等,则把左右子结点的个数相加 
		Min[x]=Min[ls];
		cnt[x]=cnt[ls]+cnt[rs];
	}
	else{	//反之,取小 
		if(Min[ls]<Min[rs])	Min[x]=Min[ls],cnt[x]=cnt[ls];
		else	Min[x]=Min[rs],cnt[x]=cnt[rs];
	}
}

void down(int l,int r,int x){
//此处cnt是不用改变的
	int mid=(l+r)>>1;
	if(tag[x]!=0){	
		tag[ls]+=tag[x];
		tag[rs]+=tag[x];
		Min[ls]+=tag[x];
		Min[rs]+=tag[x];
		tag[x]=0;
	}
}

void add(int A,int B,int v,int l,int r,int x){	
	if(A<=l&&r<=B){	
		tag[x]+=v;
		Min[x]+=v;	
		return;	
	}

	down(l,r,x);
	
	int mid=(l+r)>>1;
	if(A<=mid)	add(A,B,v,l,mid,ls);
	if(mid<B)	add(A,B,v,mid+1,r,rs);
	update(x);	
} 

//但区间查询就有丢丢麻烦了 
//此处用pair数对来表示 Min和cnt 
pair<int,int> query(int A,int B,int l,int r,int x){
	if(A<l&&r<=B)	return	make_pair(Min[x],cnt[x]);
	down(l,r,x);
	int mid=(l+r)>>1,ret=make_pair(INF,0);	
	if(A<=mid)	ret=query(A,B,l,mid,ls);	
	if(mid<B){
		pair<int,int> tmp=query(A,B,mid+1,r,rs);
		if(tmp.first==ret.first)	ret.second+=tmp.second;
		else if(tmp.first<ret.first)	ret=tmp;
	}
	return	ret;
}

总结: 要想清楚结点的更新标记的下传



3 线段树常见应用


3.1 扫描线法

经典问题:矩形的面积并

二维平面上有n个矩形,告诉你第 i i i 个矩形的左上角和右下角坐标( x x x1[ i i i ], y y y1[ i i i ]),( x x x2[ i i i ], y y y2[ i i i ])。求这些矩形的面积并。( n &lt; = 1 e 5 n&lt;=1e5 n<=1e5, 0 &lt; x , y &lt; 3 e 4 0&lt;x,y&lt;3e4 0<x,y<3e4)。

扫描线的思想:枚举第一维,统计第二维。

对于本题:考虑对于每个y,统计x坐标上哪些被矩形覆盖了。



3.2 线段树解决离线询问



3.3 线段树上二分



3.4 线段树上找答案



3.5 线段树优化图



3.6 线段树维护树上信息



3.7 线段树维护区间可合并信息



3.8 线段树维护不可合并信息



3.9 线段树维护最大子段和



4 线段树进阶


4.1 线段树的分裂与合并



4.2 可持久化线段树



4.3 二维线段树与四分树

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值