排序算法-冒泡排序

冒泡排序

1、基本介绍

  1. 思路:

    通过对待排序序列从前向后(从小标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就像水底下的气泡一样逐渐向上冒

  2. 原理:

    比较两个相邻的元素,将值大的元素交换至右端。

  3. 性能

    1.如果我们的数据正序,只需要走一趟即可完成排序。所需的比较次数C和记录移动次数M均达到最小值,即:Cmin=n-1;Mmin=0;所以,冒泡排序最好的时间复杂度为O(n)。

    2.如果很不幸我们的数据是反序的,则需要进行n-1趟排序。每趟排序要进行n-i次比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:img冒泡排序的最坏时间复杂度为:O(n2) 。

    综上所述:冒泡排序总的平均时间复杂度为:O(n2)

2、举例

排序数组:int[] arr={6,3,8,2,9,1};   

第一趟排序:

    第一次排序:6和3比较,6大于3,交换位置:  3  6  8  2  9  1

    第二次排序:6和8比较,6小于8,不交换位置:3  6  8  2  9  1

    第三次排序:8和2比较,8大于2,交换位置:  3  6  2  8  9  1

    第四次排序:8和9比较,8小于9,不交换位置:3  6  2  8  9  1

    第五次排序:9和1比较:9大于1,交换位置:  3  6  2  8  1  9

    第一趟总共进行了5次比较, 排序结果:      3  6  2  8  1  9

---------------------------------------------------------------------

第二趟排序:

    第一次排序:3和6比较,3小于6,不交换位置:3  6  2  8  1  9

    第二次排序:6和2比较,6大于2,交换位置:  3  2  6  8  1  9

    第三次排序:6和8比较,6大于8,不交换位置:3  2  6  8  1  9

    第四次排序:8和1比较,8大于1,交换位置:  3  2  6  1  8  9

    第二趟总共进行了4次比较, 排序结果:      3  2  6  1  8  9

---------------------------------------------------------------------

第三趟排序:

    第一次排序:3和2比较,3大于2,交换位置:  2  3  6  1  8  9

    第二次排序:3和6比较,3小于6,不交换位置:2  3  6  1  8  9

    第三次排序:6和1比较,6大于1,交换位置:  2  3  1  6  8  9

    第二趟总共进行了3次比较, 排序结果:         2  3  1  6  8  9

---------------------------------------------------------------------

第四趟排序:

    第一次排序:2和3比较,2小于3,不交换位置:2  3  1  6  8  9

    第二次排序:3和1比较,3大于1,交换位置:  2  1  3  6  8  9

    第二趟总共进行了2次比较, 排序结果:        2  1  3  6  8  9

---------------------------------------------------------------------

第五趟排序:

    第一次排序:2和1比较,2大于1,交换位置:  1  2  3  6  8  9

    第二趟总共进行了1次比较, 排序结果:  1  2  3  6  8  9

---------------------------------------------------------------------

最终结果:1  2  3  6  8  9

---------------------------------------------------------------------

3、代码实现

第一版

public class BubbleSortNormal {
 6     public static void main(String[] args) {
 7         int[] list = {3,4,1,5,2};
 8         int temp = 0; // 开辟一个临时空间, 存放交换的中间值
 9         // 要遍历的次数
10         for (int i = 0; i < list.length-1; i++) {
11             System.out.format("第 %d 遍:\n", i+1);
12             //依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上
13             for (int j = 0; j < list.length-1-i; j++) {
14                 // 比较相邻的元素,如果前面的数小于后面的数,就交换
15                 if (list[j] < list[j+1]) {
16                     temp = list[j+1];
17                     list[j+1] = list[j];
18                     list[j] = temp;
19                 }
20                 System.out.format("第 %d 遍的第%d 次交换:", i+1,j+1);
21                 for(int count:list) {
22                     System.out.print(count);
23                 }
24                 System.out.println("");
25             }
26             System.out.format("第 %d 遍最终结果:", i+1);
27             for(int count:list) {
28                 System.out.print(count);
29             }
30             System.out.println("\n#########################");
31         }
32     }
33 }
思路
外层循环:即主循环,需要辅助我们找到当前第 i 小的元素来让它归位。所以我们会一直遍历 n-2 次,这样可以保证前 n-1 个元素都在正确的位置上,那么最后一个也可以落在正确的位置上了。

内层循环:即副循环,需要辅助我们进行相邻元素之间的比较和换位,把大的或者小的浮到水面上。所以我们会一直遍历 n-1-i 次这样可以保证没有归位的尽量归位,而归位的就不用再比较了。

而上面的问题,出现的原因也来源于这两次无脑的循环,正是因为循环不顾一切的向下执行,所以会导致在一些特殊情况下得多余。例如 5,4,3,1,2 的情况下,常规版会进行四次循环,但实际上第一次就已经完成排序了。

运行结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q7cCwWoD-1616402033671)(https://t-images-1304141946.cos.ap-hongkong.myqcloud.com/blog/1378215-20190726141202260-350678717.png)]

优化一

public class BubbleSoerOpt1 {
 6     public static void main(String[] args) {
 7         int[] list = {5,4,3,1,2};
 8         int temp = 0; // 开辟一个临时空间, 存放交换的中间值
 9         // 要遍历的次数
10         for (int i = 0; i < list.length-1; i++) {
11             int flag = 1; //设置一个标志位
12             //依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上
13             for (int j = 0; j < list.length-1-i; j++) {
14                 // 比较相邻的元素,如果前面的数小于后面的数,交换
15                 if (list[j] < list[j+1]) {
16                     temp = list[j+1];
17                     list[j+1] = list[j];
18                     list[j] = temp;
19                     flag = 0;  //发生交换,标志位置0
20                 }
21             }
22             System.out.format("第 %d 遍最终结果:", i+1);
23             for(int count:list) {
24                 System.out.print(count);
25             }
26             System.out.println("");     
27             if (flag == 1) {//如果没有交换过元素,则已经有序
28                 return;
29             }
30                    
31         }
32     }
33 }

运行结果:可以看到优化效果非常明显,比正常情况下少了两次的循环。

img

这个时候我们就来讨论一下上面留下的一个小地方!没错就是最优时间复杂度为O(n)的问题,我们在进行了这一次算法优化之后,就可以做到了。

当给我们一个数列,5,4,3,2,1,让我们从大到小排序。没错,这是已经排好序的啊,也就是说因为标志位的存在,上面的循环只会进行一遍,flag没有变成1,整个算法就结束了,这也就是 O(n) 的来历了!

优化二

​ 在冒泡排序中还有一个问题存在,就是第 i 趟排的第 i 小或者大的元素已经在第 i 位上了,甚至可能第 i-1 位也已经归位了,那么在内层循环的时候,有这种情况出现就会导致多余的比较出现。例如:6,4,7,5,1,3,2,当我们进行第一次排序的时候,结果为6,7,5,4,3,2,1,实际上后面有很多次交换比较都是多余的,因为没有产生交换操作。

解决:

我们可以想到,利用一个标志位,记录一下当前第 i 趟所交换的最后一个位置的下标,在进行第 i+1 趟的时候,只需要内循环到这个下标的位置就可以了,因为后面位置上的元素在上一趟中没有换位,这一次也不可能会换位置了。基于这个原因,我们可以进一步优化我们的代码。

public class BubbleSoerOpt2 {
 6     public static void main(String[] args) {
 7         int[] list = {6,4,7,5,1,3,2};
 8         int len = list.length-1;
 9         int temp = 0; // 开辟一个临时空间, 存放交换的中间值
10         int tempPostion = 0;  // 记录最后一次交换的位置
11         // 要遍历的次数
12         for (int i = 0; i < list.length-1; i++) {
13             int flag = 1; //设置一个标志位
14             //依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上
15             for (int j = 0; j < len; j++) {
16                 // 比较相邻的元素,如果前面的数小于后面的数,交换
17                 if (list[j] < list[j+1]) {
18                     temp = list[j+1];
19                     list[j+1] = list[j];
20                     list[j] = temp;
21                     flag = 0;  //发生交换,标志位置0
22                     tempPostion = j;  //记录交换的位置
23                 }
24                 System.out.format("第 %d 遍第%d 趟结果:", i+1, j+1);
25                 for(int count:list) {
26                     System.out.print(count);
27                 }
28                 System.out.println("");     
29             }
30             len = tempPostion; //把最后一次交换的位置给len,来缩减内循环的次数
31             System.out.format("第 %d 遍最终结果:", i+1);
32             for(int count:list) {
33                 System.out.print(count);
34             }
35             System.out.println("");     
36             if (flag == 1) {//如果没有交换过元素,则已经有序
37                 return;
38             }
39                    
40         }
41     }
42 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值