给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
想法
通过看图明白这就是一个动态规划
遍历一遍就完事儿
但是考虑到我们其实应该找两个距离较远的柱子
所以想到双指针
直接看代码吧
Java代码
class Solution {
public int maxArea(int[] height) {
int maxarea=0;
int l=0;//左指针
int r=height.length-1;
while(l<r){
maxarea=Math.max(maxarea,Math.min(height[l],height[r])*(r-l));//动态规划
if(height[l]<height[r]){
l++;
}
else{
r--;
}
}
return maxarea;
}
}