leetcode【每日一题】1579. 保证图可完全遍历 java

题干

Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:

类型 1:只能由 Alice 遍历。
类型 2:只能由 Bob 遍历。
类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。

返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。

示例 1:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。
示例 2:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。
示例 3:

输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。

提示:

1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
所有元组 (typei, ui, vi) 互不相同

想法

并查集

Java代码

class Solution {
    public int maxNumEdgesToRemove(int n, int[][] edges) {
        UnionFind ufa = new UnionFind(n);
        UnionFind ufb = new UnionFind(n);
        int ans = 0;

        // 节点编号改为从 0 开始
        for (int[] edge : edges) {
            --edge[1];
            --edge[2];
        }

        // 公共边
        for (int[] edge : edges) {
            if (edge[0] == 3) {
                if (!ufa.unite(edge[1], edge[2])) {
                    ++ans;
                } else {
                    ufb.unite(edge[1], edge[2]);
                }
            }
        }

        // 独占边
        for (int[] edge : edges) {
            if (edge[0] == 1) {
                // Alice 独占边
                if (!ufa.unite(edge[1], edge[2])) {
                    ++ans;
                }
            } else if (edge[0] == 2) {
                // Bob 独占边
                if (!ufb.unite(edge[1], edge[2])) {
                    ++ans;
                }
            }
        }

        if (ufa.setCount != 1 || ufb.setCount != 1) {
            return -1;
        }
        return ans;
    }
}

// 并查集模板
class UnionFind {
    int[] parent;
    int[] size;
    int n;
    // 当前连通分量数目
    int setCount;

    public UnionFind(int n) {
        this.n = n;
        this.setCount = n;
        this.parent = new int[n];
        this.size = new int[n];
        Arrays.fill(size, 1);
        for (int i = 0; i < n; ++i) {
            parent[i] = i;
        }
    }
    
    public int findset(int x) {
        return parent[x] == x ? x : (parent[x] = findset(parent[x]));
    }
    
    public boolean unite(int x, int y) {
        x = findset(x);
        y = findset(y);
        if (x == y) {
            return false;
        }
        if (size[x] < size[y]) {
            int temp = x;
            x = y;
            y = temp;
        }
        parent[y] = x;
        size[x] += size[y];
        --setCount;
        return true;
    }
    
    public boolean connected(int x, int y) {
        x = findset(x);
        y = findset(y);
        return x == y;
    }
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页