libtorch---day02[第一个分类器]

参考pytorch

加载数据集CIFAR10

因为例程中使用的是torchvision加载数据集CIFAR10,但是torchvision的c++版本提供的功能太少,不考虑使用了,直接下载bin文件进行读取加载,CIFAR10数据格式:

CIFAR-10 数据集的图像数据以二进制格式存储。数据集中每张图像由以下几个部分组成:

  • 标签 (1 byte):

      表示图像所属的类别(0-9)。每个标签占用 1 个字节。
    
  • 图像数据 (3072 bytes):

      1、图像数据以 3072 字节的顺序存储,其中每个图像由 3 个通道(红色、绿色、蓝色)组成。
      2、每个通道的大小为 32 x 32 = 1024 字节,因此图像数据总大小为 1024 x 3 = 3072 字节。
      3、数据排列顺序为:红色通道的所有像素,接着是绿色通道的所有像素,最后是蓝色通道的所有像素。
    
  • 每个样本的二进制格式结构

字节 1: 标签 (0-9)
字节 2-1025: 红色通道的像素数据 (32x32)
字节 1026-2049: 绿色通道的像素数据 (32x32)
字节 2050-3073: 蓝色通道的像素数据 (32x32)

#define IMAGE_HEIGHT 32
#define IMAGE_WIDTH 32
// ...
void load_CIFAR(std::vector<std::pair<char, cv::Mat> >& images)
{
	std::ifstream fs(CIFAR_data_path.c_str(), std::ios::binary);
	if (fs.is_open())
	{
		while (!fs.eof())
		{
			char label;
			std::vector<uchar> image;
			image.resize(3 * IMAGE_HEIGHT * IMAGE_WIDTH);
			fs.read(&label, 1);
			fs.read(reinterpret_cast<char*>(image.data()), 3 * IMAGE_HEIGHT * IMAGE_WIDTH);
			cv::Mat image_cv(IMAGE_WIDTH, IMAGE_HEIGHT, CV_8UC3);
#pragma omp for
			for (int i = 0; i < IMAGE_HEIGHT; i++)
			{
				for (int j = 0; j < IMAGE_WIDTH; j++)
				{
					image_cv.at<cv::Vec3b>(i, j)[0] = image[i * IMAGE_WIDTH + j];
					image_cv.at<cv::Vec3b>(i, j)[1] = image[i * IMAGE_WIDTH + j + IMAGE_HEIGHT * IMAGE_WIDTH];
					image_cv.at<cv::Vec3b>(i, j)[2] = image[i * IMAGE_WIDTH + j + IMAGE_HEIGHT * IMAGE_WIDTH * 2];
				}
			}

			images.push_back({ label, image_cv });
		}
		fs.close();
	}
}

构造网络

这里的torch::nn::Linear、torch::nn::Conv2d等等都是torch::nn::ModuleHolder,本质上都是智能指针,因此在定义的时候就需要给初始值。

class Classifier : public torch::nn::Module
{
public:
	torch::nn::Linear fc1{ nullptr }, fc2{ nullptr }, fc3{ nullptr };
	torch::nn::Conv2d conv1{ nullptr }, conv2{nullptr};
	torch::nn::MaxPool2d pool{ nullptr };
	Classifier() : Module(),
		fc1(torch::nn::Linear(torch::nn::LinearOptions(16 * 5 * 5, 120))),
		fc2(torch::nn::Linear(torch::nn::LinearOptions(120, 84))),
		fc3(torch::nn::Linear(torch::nn::LinearOptions(84, 10))),
		conv1(torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 6, 5))),
		conv2(torch::nn::Conv2d(torch::nn::Conv2dOptions(6, 16, 5))),
		pool(torch::nn::MaxPool2d(torch::nn::MaxPool2dOptions(2).stride(2)))
	{
		register_module("conv1", conv1);
		register_module("conv2", conv2);
		register_module("pool", pool);
		register_module("fc1", fc1);
		register_module("fc2", fc2);
		register_module("fc3", fc3);
	}
	~Classifier()
	{

	}
	torch::Tensor forward(torch::Tensor x)
	{
		x = pool->forward(torch::nn::functional::relu(conv1->forward(x)));
		x = pool->forward(torch::nn::functional::relu(conv2->forward(x)));
		x = torch::flatten(x, 1);
		x = torch::nn::functional::relu(fc1->forward(x));
		x = torch::nn::functional::relu(fc2->forward(x));

		auto y = fc3->forward(x);
		return y;
	}
};

数据转换

这里比较关键的是:cv::Mat和torch::Tensor的相互转化,如果不考虑可视化的话,也可以在加载CIFAR10数据集的时候,在读取字节流的时候顺手把它转化为tensor也是可以的。

auto tensor = torch::from_blob(image.second.data, { image.second.rows, image.second.cols, 3 }, torch::kUInt8).clone();
tensor = tensor.permute({ 2, 0, 1 });
tensor = tensor.unsqueeze(0);
tensor = tensor.to(torch::kF32) / 255.;
tensor = tensor.sub(0.5).div(0.5);

这里的image是一个cv::Mat格式的数据,使用from_blob方法进行转化,并且使用clone方法进行拷贝防止在转化完成之后,这部分内存空间被opencv自动回收,需要显式调用unsqueeze添加batch的维度。

完整代码

#include <torch/torch.h>
#include <torch/nn/module.h>
#include <torch/nn/modules/conv.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/pooling.h>
#include <torch/nn/functional.h>
#include <torch/optim/optimizer.h>
#include <opencv2/opencv.hpp>
#include <fstream>
#define IMAGE_HEIGHT 32
#define IMAGE_WIDTH 32
std::string CIFAR_data_path = "P:/torch-cpp/dataSet/cifar-10-batches-bin/data_batch_1.bin";
void load_CIFAR(std::vector<std::pair<char, cv::Mat> >& images)
{
	std::ifstream fs(CIFAR_data_path.c_str(), std::ios::binary);
	if (fs.is_open())
	{
		while (!fs.eof())
		{
			char label;
			std::vector<uchar> image;
			image.resize(3 * IMAGE_HEIGHT * IMAGE_WIDTH);
			fs.read(&label, 1);
			fs.read(reinterpret_cast<char*>(image.data()), 3 * IMAGE_HEIGHT * IMAGE_WIDTH);
			cv::Mat image_cv(IMAGE_WIDTH, IMAGE_HEIGHT, CV_8UC3);
#pragma omp for
			for (int i = 0; i < IMAGE_HEIGHT; i++)
			{
				for (int j = 0; j < IMAGE_WIDTH; j++)
				{
					image_cv.at<cv::Vec3b>(i, j)[0] = image[i * IMAGE_WIDTH + j];
					image_cv.at<cv::Vec3b>(i, j)[1] = image[i * IMAGE_WIDTH + j + IMAGE_HEIGHT * IMAGE_WIDTH];
					image_cv.at<cv::Vec3b>(i, j)[2] = image[i * IMAGE_WIDTH + j + IMAGE_HEIGHT * IMAGE_WIDTH * 2];
				}
			}

			images.push_back({ label, image_cv });
		}
		fs.close();
	}
}
class Classifier : public torch::nn::Module
{
public:
	torch::nn::Linear fc1{ nullptr }, fc2{ nullptr }, fc3{ nullptr };
	torch::nn::Conv2d conv1{ nullptr }, conv2{nullptr};
	torch::nn::MaxPool2d pool{ nullptr };
	Classifier() : Module(),
		fc1(torch::nn::Linear(torch::nn::LinearOptions(16 * 5 * 5, 120))),
		fc2(torch::nn::Linear(torch::nn::LinearOptions(120, 84))),
		fc3(torch::nn::Linear(torch::nn::LinearOptions(84, 10))),
		conv1(torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 6, 5))),
		conv2(torch::nn::Conv2d(torch::nn::Conv2dOptions(6, 16, 5))),
		pool(torch::nn::MaxPool2d(torch::nn::MaxPool2dOptions(2).stride(2)))
	{
		register_module("conv1", conv1);
		register_module("conv2", conv2);
		register_module("pool", pool);
		register_module("fc1", fc1);
		register_module("fc2", fc2);
		register_module("fc3", fc3);
	}
	~Classifier()
	{

	}
	torch::Tensor forward(torch::Tensor x)
	{
		x = pool->forward(torch::nn::functional::relu(conv1->forward(x)));
		x = pool->forward(torch::nn::functional::relu(conv2->forward(x)));
		x = torch::flatten(x, 1);
		x = torch::nn::functional::relu(fc1->forward(x));
		x = torch::nn::functional::relu(fc2->forward(x));

		auto y = fc3->forward(x);
		return y;
	}
};
int main()
{
	std::vector<std::pair<char, cv::Mat>> images;
	load_CIFAR(images);
	Classifier net;
	net.train();
	torch::nn::CrossEntropyLoss criterion;
	auto optimizer = torch::optim::SGD(net.parameters(), torch::optim::SGDOptions(0.01));
	int batch_size = 16;
	int epoches = 100;
	for (int epoch = 0; epoch < epoches; epoch++)
	{
		double running_loss = 0.;
		for (int i = 0; i < images.size(); i+= batch_size)
		{
			std::vector<torch::Tensor> batch_images;
			std::vector<torch::Tensor> batch_labels;
#pragma omp for
			for (int batch = 0; batch < batch_size && batch + i < images.size(); batch++)
			{
				auto image = images[i + batch];
				auto tensor = torch::from_blob(image.second.data, { image.second.rows, image.second.cols, 3 }, torch::kUInt8).clone();
				tensor = tensor.permute({ 2, 0, 1 });
				tensor = tensor.unsqueeze(0);
				tensor = tensor.to(torch::kF32) / 255.;
				tensor = tensor.sub(0.5).div(0.5);
				auto target = torch::tensor({ static_cast<int>(image.first) }, torch::kLong);
#pragma omp critical
				{
					batch_images.push_back(tensor);
					batch_labels.push_back(target);
				}
			}
			// 将小批次的图像和标签堆叠成一个大批次
			auto input_batch = torch::cat(batch_images, 0);
			auto label_batch = torch::cat(batch_labels, 0);
			auto predict = net.forward(input_batch);
			optimizer.zero_grad();
			auto loss = criterion(predict, label_batch);
			loss.backward();
			optimizer.step();
			running_loss += loss.item<double>();
			std::cout << "Epoch [" << (epoch + 1) << "/" << epoches << "] - Loss: " << running_loss / images.size() << std::endl;
		}
	}
	cv::Mat image_show;
	std::vector<cv::Mat> image_show_vector;
	for (int i = 0; i < 5; i++)
	{
		std::vector<cv::Mat> image_row_vector;
		for (int j = 0; j < 5; j++)
		{
			auto image = images[i * 5 + j];
			auto tensor = torch::from_blob(image.second.data, { image.second.rows, image.second.cols, 3 }, torch::kUInt8).clone();
			tensor = tensor.permute({ 2, 0, 1 });
			tensor = tensor.unsqueeze(0);
			tensor = tensor.to(torch::kF32) / 255.;
			tensor = tensor.sub(0.5).div(0.5);
			auto predict = net.forward(tensor);
			int label = torch::argmax(predict, 1).item<int>();

			cv::Mat image_resize;
			cv::resize(image.second, image_resize, cv::Size(), 8, 8, cv::INTER_CUBIC);
			cv::putText(image_resize, "ground true: " + std::to_string(image.first), { 10, 30 }, cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 3);
			cv::putText(image_resize, "pridict: " + std::to_string(label), { 10, 80 }, cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 3);
			image_row_vector.push_back(image_resize);
		}
		cv::Mat image_temp;
		cv::hconcat(image_row_vector, image_temp);
		image_show_vector.push_back(image_temp);
	}
	cv::vconcat(image_show_vector, image_show);
	cv::imwrite("validation.png", image_show);
	/*cv::imshow("image", image_show);
	cv::waitKey(0);*/
	return 0;
}

结果

请添加图片描述

损失函数区别

day01使用的是MSELoss(均方根误差),基本公式
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n}\sum_{i =1 }^n(y_i-\hat{y}_i)^2 MSE=n1i=1n(yiy^i)2
描述的是回归任务中的预测值和真实值之间的差的平方均值。
在这里是分类任务,使用的是CrossEntropyLoss(交叉熵损失函数),假设网络的输出是一个向量
p ^ c = [ p ^ 1 c p ^ 2 c ⋯ p ^ n c ] \hat{p}_c = \left[\begin{matrix}\hat{p}_{1c}&\hat{p}_{2c}\cdots \hat{p}_{nc}\end{matrix}\right] p^c=[p^1cp^2cp^nc]
这个向量的每一个元素代表对于每一个标签的预测的概率大小, y c y_c yc是真实标签,是一个标量,那么交叉熵损失函数定义为
C r o s s E n t r o p y = − 1 n ∑ i = 1 n ∑ c = 1 C y i c l o g ( p ^ i c ) CrossEntropy = -\frac{1}{n}\sum_{i=1}^n\sum_{c=1}^Cy_{ic}log(\hat{p}_{ic}) CrossEntropy=n1i=1nc=1Cyiclog(p^ic)

  • 18
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值