统计数字问题
题目描述:
一本书的页码从自然数1开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如第6页用6表示而不是06或006。数字统计问题要求对给定书的总页码,计算出书的全部页码中分别用到多少次数字0,1,2,3,…9。
思路:
1.如果页码可以含有前导数字0,容易发现在区间00……00到99……99(n个0或9)内所有数字出现次数相同,并满足推导公式:
长度为n的上述区间含有每个数字出现次数getNum(n)=10 * getNum(n-1)+10 * pow(10,n-1)
例:
0000~9999可以划分为10个区间:
0000 ~ 0999, 1000 ~1999, 2000 ~2999, ……9000 ~ 9999
①每个区间不看最高位,属于同样的形式:000 ~ 999区间内各数字出现次数
②处理最高位:最高位出现次数=10n-1 即104-1=1000
2.①任意一个页码数可以划分成若干个类似的区间:
eg:
30087
00000~ 09999, 10000~19999, 20000 ~ 29999
区间个数p=number/10n-1=3
三个区间的各数字出现次数: t=getNum(n-1)*p
其中0~p-1的各位数字还要加上10n-1
②再来处理最高位以3开头的数字:
最高位p
余数rest=number%10n-1
Num[p]+=rest+1;
③处理余数
rest=0
数字0出现次数Num[0] += (n-1)
rest!=0
rest有前导0:如30087,余数为87,则前导m个0需要处理Num[0]+=(m*(rest+1) ),然后递归处理余数
rest没有前导0:递归处理余数(方法同上)
④减去前导0
例如123:
100+101+102
长度为n的前导0: 100+101+……+10n-1
代码示例:
#include <iostream>
#include<fstream>
#include<cmath>
using namespace std;
int Num[10];
//得到区间的各数字的出现次数
int getPeriodNum(int upside){
if(upside==0)
return 0;
int len=log10(upside)+1;//位数
if(len==1)//0~9
return 1;
else
return pow(10,len-1)+10*getPeriodNum(upside%10);
}
void getNum(int number){
//位数
int len=log10(number)+1;
if(len==1){//一位数
for(int i=0;i<=number;i++)
Num[i]++;
return;
}
//区间数
int parts=number/((int)pow(10,len-1));
//区间上界
int upside=0;
for(int i=0;i<=len-2;i++)
upside+=9*pow(10,i);
//每个区间的各位数字的个数(不包括最高位)
int PeriodNum=getPeriodNum(upside);
for(int i=0;i<10;i++)
Num[i]+=parts*PeriodNum;
//最高位
for(int i=0;i<=parts-1;i++)
Num[i]+=pow(10,len-1);
int x=ceil(pow(10,len-1));
int rest=number%x;//余数
Num[parts]+=rest+1;
//余数为0
if(rest==0) {
Num[0]+=pow(10,len-1);
return;
}
//递归处理余数
//如果余数是000****形式,加上头部的零出现次数
int lenRest=log10(rest)+1;
if(lenRest<len-1)
Num[0]+=(len-1-lenRest)*(rest+1);
//处理余数
getNum(rest);
}
int main(){
ifstream in;
in.open("input.txt");
int number;
in>>number;
in.close();
ofstream out("output.txt");
//初始化
for(int i=0;i<10;i++){
Num[i]=0;
}
getNum(number);
//处理零
int len=log10(number)+1;
for(int i=0;i<=len-1;i++)
Num[0]-=pow(10,i);
for(int i=0;i<10;i++)
out<<Num[i]<<'\n';
out.close();
return 0;
}