这题一看就知道是二维线段树模板题,然后我就一直改二维线段树的模板,然后一直mle,感觉比较迷,还好队友跟我说了一种做法:开一百棵线段树来对应每个h,然后就是一维线段树的常规操作了。顿时茅塞顿开,那这题就很简单了,对每个h建立了线段树之后,然后就是单点修改,对于区间查询,遍历[h1,h2]所有线段树区间[a1,a2]上l的最大值,纪录最大就行
坑点:
1.它这题浮点数不能%d.%d这么读入避免误差,因为他的浮点数也可能按整数形式输入
2.区间查询是它给的h1,h2,a1,a2,可能存在h1>h2,a1>a2
3.同h同a的点,可能输入多个,得纪录最大值
|
Luck and LoveTime Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9213 Accepted Submission(s): 2382
Problem Description
世界上上最远的距离不是相隔天涯海角
而是我在你面前 可你却不知道我爱你 ―― 张小娴 前段日子,枫冰叶子给Wiskey做了个征婚启事,聘礼达到500万哦,天哪,可是天文数字了啊,不知多少MM蜂拥而至,顿时万人空巷,连扫地的大妈都来凑热闹来了。―_―||| 由于人数太多,Wiskey实在忙不过来,就把统计的事情全交给了枫冰叶子,自己跑回家休息去了。这可够枫冰叶子忙的了,他要处理的有两类事情,一是得接受MM的报名,二是要帮Wiskey查找符合要求的MM中缘分最高值。
Input
本题有多个测试数据,第一个数字M,表示接下来有连续的M个操作,当M=0时处理中止。
接下来是一个操作符C。 当操作符为‘I’时,表示有一个MM报名,后面接着一个整数,H表示身高,两个浮点数,A表示活泼度,L表示缘分值。 (100<=H<=200, 0.0<=A,L<=100.0) 当操作符为‘Q’时,后面接着四个浮点数,H1,H2表示身高区间,A1,A2表示活泼度区间,输出符合身高和活泼度要求的MM中的缘分最高值。 (100<=H1,H2<=200, 0.0<=A1,A2<=100.0) 所有输入的浮点数,均只有一位小数。
Output
对于每一次询问操作,在一行里面输出缘分最高值,保留一位小数。
对查找不到的询问,输出-1。
Sample Input
8 I 160 50.5 60.0 I 165 30.0 80.5 I 166 10.0 50.0 I 170 80.5 77.5 Q 150 166 10.0 60.0 Q 166 177 10.0 50.0 I 166 40.0 99.9 Q 166 177 10.0 50.0 0
Sample Output
80.5 50.0 99.9
Author
威士忌
Source
Recommend
威士忌
|
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#define ll long long
#define maxn 1500
using namespace std;
#define eps 1e-6
ll n,m;
ll tre[215][maxn<<2];
void push(ll h,ll id)
{
tre[h][id]=max(tre[h][id<<1],tre[h][id<<1|1]);
}
void build(ll h,ll l,ll r,ll id)
{
if(l==r)
{
tre[h][id]=-1;
return;
}
ll mid=(l+r)/2;
build(h,l,mid,id<<1);
build(h,mid+1,r,id<<1|1);
push(h,id);
}
void update(ll h,ll a,ll w,ll l,ll r,ll id)
{
if(l==r)
{
tre[h][id]=w;
return;
}
ll mid=(l+r)/2;
if(a<=mid) update(h,a,w,l,mid,id<<1);
else
{
update(h,a,w,mid+1,r,id<<1|1);
}
push(h,id);
}
ll query(ll h,ll a,ll b,ll l,ll r,ll id)
{
if(l>=a&&r<=b)
{
return tre[h][id];
}
if(l>b||r<a) return -1;
ll mid=(l+r)/2;
ll ans=-1;
if(a<=mid)
{
ll x=query(h,a,b,l,mid,id<<1);
ans=max(ans,x);
}
if(mid<r)
{
ll x=query(h,a,b,mid+1,r,id<<1|1);
ans=max(ans,x);
}
return ans;
}
int main()
{
while(scanf("%lld",&m)!=EOF&&m)
{
memset(tre,-1,sizeof(tre));
n=1015;
for(ll i=0;i<=205;i++)
{
build(i,1,n,1);
}
//printf("--%lld\n",query(1,1,10,1,n,1));
while(m--)
{
char op;
getchar();
scanf("%c",&op);
if(op=='I')
{
ll h;double a1,l1;
scanf("%lld %lf %lf",&h,&a1,&l1);
//h-=99;
ll A=(ll)(a1*10ll),L=(ll)(l1*10ll);
ll x=query(h,A,A,1,n,1);
//printf("h=%lld A=%lld L=%lld x=%lld\n",h,A,L,x);
update(h,A,max(x,L),1,n,1);
}
else
{
ll h11,h22;double a11,a22;
scanf("%lld %lld %lf %lf",&h11,&h22,&a11,&a22);
ll h1=h11,h2=h22,a1=(ll)(a11*10ll),a2=(ll)(a22*10ll);
//ll h1=doubletoint(h11),h2=doubletoint(h22),a1=doubletoint(a11*10.0),a2=doubletoint(a22*10.0);
//(int)((t1+eps)*10),(int)((t2+eps)*10)
//h1-=99;
//h2-=99;
if(h1>h2) swap(h1,h2);
if(a1>a2) swap(a1,a2);
//printf("h1=%lld h2=%lld a1=%lld a2=%lld\n",h1,h2,a1,a2);
ll mx=-1;
for(ll i=h1;i<=h2;i++)
{
ll s=query(i,a1,a2,1,n,1);
mx=max(mx,s);
//printf("i=%I64d s=%I64d mx=%I64d\n",i,s,mx);
}
if(mx==-1) printf("-1\n");
else
{
printf("%.1f\n",(double)(mx/10.0));
}
}
}
}
}