题目描述
一个国家有n个城市。若干个城市之间有电话线连接,现在要增加m条电话线(电话线当然是双向的了),使得任意两个城市之间都直接或间接经过其他城市有电话线连接,你的程序应该能够找出最小费用及其一种连接方案。
输入描述
输入的第一行是n的值(n<=100)。
第二行至第n+1行是一个n*n的矩阵,第i行第j列的数如果为0表示城市i与城市j有电话线连接,否则为这两个城市之间的连接费用(范围不超过10000)。
输出描述
输出的第一行为你连接的电话线总数m,第二行至第m+1行为你连接的每条电话线,格式为i j,(i<j), i, j是电话线连接的两个城市。输出请按照Prim算法发现每一条边的顺序输出,起始点为1.
第m+2行是连接这些电话线的总费用。
样例输入
5
0 15 27 6 0
15 0 33 19 11
27 33 0 0 17
6 19 0 0 9
0 11 17 9 0
样例输出
2
1 4
2 5
17
数据范围及提示
n<=100
分析
这道题利用了prim最小生成树算法。
#include<iostream>
using namespace std;
#define N 100 + 10
#define INF 0x3f3f3f3f
int n;
int a[N][N];
int cost;
int num;
struct Node {
int x,y;
Node(int x,int y) {
this->x = x;
this->y = y;
}
Node() {}
} node[N];
struct Edge {
int lowcost,adjvex;//lowcost存储边的权值,adjvex存储对应的连接点
} e[N];
//找到权值最小的边,返回下标
int minEdge()
{
int min = INF,index = -1;
for(int i = 1; i <= n; i++)
if(min > e[i].lowcost && e[i].lowcost != -1) {
min = e[i].lowcost;
index = i;
}
return index;
}
void Prim()
{
for(int i = 1; i <= n; i++) {
e[i].lowcost = a[1][i];
e[i].adjvex = 1;
}
e[1].lowcost = -1;//标记
for(int i = 2; i <= n; i++) {
int k = minEdge();
if(e[k].lowcost) {//如果不为0,说明需要费用,将费用和点进行存储
node[num].x = min(k,e[k].adjvex);
node[num].y = max(k,e[k].adjvex);
num++;
cost += e[k].lowcost;
}
e[k].lowcost = -1;
for(int j = 1; j <= n; j++)
if(a[k][j] < e[j].lowcost) {
e[j].lowcost = a[j][k];
e[j].adjvex = k;
}
}
}
int main()
{
cin >> n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) {
cin >> a[i][j];
if(i == j) a[i][j] = INF;
}
Prim();
cout << num << endl;
for(int i = 0; i < num; i++)
cout << node[i].x << ' ' << node[i].y << endl;
cout << cost << endl;
return 0;
}