机器学习 数据预处理之特征编码(归纳整理版)

特征编码

由于机器学习算法都是在矩阵上执行线性代数计算,所以参加计算的特征必须是数值型的,对于非数值型的特征需要进行编码处理。对于离散型数据的编码,我们通常会使用两种方式来实现,分别是标签编码独热编码

标签编码

将类别型特征从字符串转换为数字

特点:

  • 解决了分类编码的问题,可以自由定义量化数字
  • 数值本身没有任何含义,仅是标识或者排序的作用
  • 可解释性比较差

适用范围:

  • 对于定序类型的数据,使用标签编码更好,虽然定序类型也属于分类,但是其有排序逻辑
  • 对数值大小不敏感的模型(如树模型),建议使用标签编码

方式一:map 或 replace

import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.feature_extraction import DictVectorizer
df = pd.DataFrame([
            ['green', 'M', 10.1, 'class1'], 
            ['red', 'L', 13.5, 'class2'], 
            ['blue', 'XL', 15.3, 'class1']])

df.columns = ['color', 'size', 'prize', 'class label']
df

在这里插入图片描述

class_mapping = {
   label:idx for idx,label in enumerate(set(df['class label']))}

df['class label'] = df['class label'].map(class_mapping)
df

在这里插入图片描述

size_mapping = {
   
           'XL': 3,
           'L': 2,
           'M': 1}

df['size'] = df['size'].map(size_mapping)
df

在这里插入图片描述

color_mapping = {
   
           'green': 1
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值