核心思想:
fa[a]存储与a同类的
fa[a+1 * n]存储与a发生第一类关系的
fa[a+2 * n]存储与a发生第二类关系的
fa[a+3 * n]存储与a发生第三类关系的
例1:Gang团伙,题目链接:https://vjudge.net/problem/HYSBZ-1370
分析
将并查集中存储节点关系的f数组扩大2倍,1~n表示朋友,n + 1~2 * n表示敌人。
那么对于x,y,如果x和y是朋友,直接合并,如果x和y是敌人,则y+n是y的敌人,x和y+n是朋友,所以合并x和y+n,同理,合并y和x+n。
#include<iostream>
#include<cstdio>
using namespace std;
#define M 5000 + 10
int f[M << 1];
int find(int x)
{
if(x == f[x]) return x;
return f[x] = find(f[x]);
}
void merge(int x,int y)
{
f[find(x)] = find(y);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1; i <= n << 1; i++)
f[i] = i;
char c;
int x,y;
for(int i = 0; i < m; i++) {
scanf(" %c%d%d",&c,&x,&y);
if(c == 'F') {
merge(x,y);
} else {
merge(y + n,x);//将反集合并到正集上
merge(x + n,y);
}
}
int ans = 0;
for(int i = 1; i <= n; i++)
if(f[i] == i) ans++;
printf("%d\n",ans);
return 0;
}
例2:关押罪犯,题目链接:http://codevs.cn/problem/1069/
分析
同上一道题一样,开辟多一个n空间来存储x的补集,即不包含x的集合,将冲突按值从大到小排序,这样一开始就可以就将大的冲突分开,直到发生第一次冲突,即冲突的双方在同一集合中,这时找到的冲突值就是不可避免的最大的冲突值。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 20000 + 10
#define M 100000 + 10
int f[N << 1];
struct Edge {
int from,to,w;
bool operator < (const Edge& b) const {
return w > b.w;
}
} e[M];
int find(int x)
{
if(x == f[x]) return x;
return f[x] = find(f[x]);
}
void merge(int x,int y)
{
f[find(x)] = find(y);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1; i <= n << 1; i++)
f[i] = i;
for(int i = 0; i < m; i++)
scanf("%d%d%d",&e[i].from,&e[i].to,&e[i].w);
sort(e,e + m);
int x,y;
for(int i = 0; i < m; i++) {
x = e[i].from,y = e[i].to;
if(find(x) == find(y)) {
printf("%d\n",e[i].w);
return 0;
}
merge(y + n,x);//y+n表示y的补集
merge(x + n,y);//x+n表示x的补集
}
printf("0\n");
return 0;
}
例3:食物链,题目链接:http://codevs.cn/problem/1074/ ,留给读者