这是基于 LSB 算法的图像水印隐藏技术的基本原理、实现步骤以及示例源码:
一、基本原理
• 利用像素的最低有效位:
图像的每个像素值通常由8位二进制数表示,其中最低位(LSB)对像素颜色的影响最小,人眼几乎无法察觉。LSB算法就是将水印信息嵌入到载体图像像素值的最低有效位中,从而实现水印的隐藏。
• 替换最低位实现隐藏:
将水印图像的二进制数据逐位替换载体图像对应像素的最低位,得到含有水印信息的图像。提取时,再从含水印图像的像素最低位中逐位提取出水印信息,恢复出原始水印图像。
二、实现步骤
1.初始化载体图像和水印图像:读取载体图像和水印图像,并将它们转换为灰度图像(如果是彩色图像,可分别对 R、G、B 三个通道进行操作)。
2.嵌入水印:
• 遍历水印图像的每个像素,将其二进制表示的每一位依次嵌入到载体图像对应像素的最低位。例如,若水印图像的某像素二进制为 10101011,载体图像对应像素的二进制为 11001010,则嵌入后载体图像该像素的二进制变为 11001011。
• 若载体图像和水印图像大小不同,可通过缩放等方法使它们匹配,或者只在载体图像的局部区域嵌入水印。
3.提取水印:
• 遍历含水印图像的每个像素,提取其最低位,按顺序拼接起来,得到水印图像的二进制数据。
• 将提取出的二进制数据转换回图像格式,即可恢复出原始水印图像。
源码(Python实现)
import cv2
import numpy as np
# 嵌入水印
def embed_watermark(carrier_image_path, watermark_image_path, output_image_path):
# 读取载体图像和水印图像
carrier_image = cv2.imread(carrier_image_path, cv2.IMREAD_GRAYSCALE)
watermark_image = cv2.imread(watermark_image_path, cv2.

最低0.47元/天 解锁文章
1027

被折叠的 条评论
为什么被折叠?



