基于LSB算法的图片水印隐藏技术原理及实现

这是基于 LSB 算法的图像水印隐藏技术的基本原理、实现步骤以及示例源码:
一、基本原理
• 利用像素的最低有效位:
图像的每个像素值通常由8位二进制数表示,其中最低位(LSB)对像素颜色的影响最小,人眼几乎无法察觉。LSB算法就是将水印信息嵌入到载体图像像素值的最低有效位中,从而实现水印的隐藏。
• 替换最低位实现隐藏:
将水印图像的二进制数据逐位替换载体图像对应像素的最低位,得到含有水印信息的图像。提取时,再从含水印图像的像素最低位中逐位提取出水印信息,恢复出原始水印图像。
二、实现步骤
1.初始化载体图像和水印图像:读取载体图像和水印图像,并将它们转换为灰度图像(如果是彩色图像,可分别对 R、G、B 三个通道进行操作)。
2.嵌入水印:
• 遍历水印图像的每个像素,将其二进制表示的每一位依次嵌入到载体图像对应像素的最低位。例如,若水印图像的某像素二进制为 10101011,载体图像对应像素的二进制为 11001010,则嵌入后载体图像该像素的二进制变为 11001011。
• 若载体图像和水印图像大小不同,可通过缩放等方法使它们匹配,或者只在载体图像的局部区域嵌入水印。
3.提取水印:
• 遍历含水印图像的每个像素,提取其最低位,按顺序拼接起来,得到水印图像的二进制数据。
• 将提取出的二进制数据转换回图像格式,即可恢复出原始水印图像。
源码(Python实现)

import cv2
import numpy as np

# 嵌入水印
def embed_watermark(carrier_image_path, watermark_image_path, output_image_path):
    # 读取载体图像和水印图像
    carrier_image = cv2.imread(carrier_image_path, cv2.IMREAD_GRAYSCALE)
    watermark_image = cv2.imread(watermark_image_path, cv2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值